Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-16T17:21:17.741Z Has data issue: false hasContentIssue false

Dopamine Transporter Binding in Wilson's Disease

Published online by Cambridge University Press:  16 December 2016

Chin-Chang Huang*
Affiliation:
Department of Neurology, Chang Gung Memorial Hospital and University, Taipei, Taiwan
Nai-Shin Chu
Affiliation:
Department of Neurology, Chang Gung Memorial Hospital and University, Taipei, Taiwan
Tzu-Chen Yen
Affiliation:
Department of Nuclear Medicine, Chang Gung Memorial Hospital and University, Taipei, Taiwan
Yau-Yau Wai
Affiliation:
Department of Neuroradiology, Chang Gung Memorial Hospital and University, Taipei, Taiwan
Chin-Song Lu
Affiliation:
Department of Neurology, Chang Gung Memorial Hospital and University, Taipei, Taiwan
*
Department of Neurology, Chang Gung Memorial Hospital and University, 199 Tung Hwa North Road, Taipei, Taiwan.
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Introduction:

In Wilson's disease (WD), brain magnetic resonance images (MRI) show increased signal intensity in T2 weighted images in the lenticular nuclei, thalamus and brainstem, including the substantia nigra. A poor therapeutic response to levodopa in WD suggests the mechanism of a postsynaptic abnormality. However positron emission tomography studies show an involvement of the nigrostriatal presynaptic dopaminergic pathway.

Case report:

We report the clinical manifestations in a case of WD with akinetic-rigid syndrome and initial hesitation. The brain MRI showed an increased signal intensity lesion in the substantia nigra region, in addition to basal ganglion and thalamic lesions. However, dopamine transporter (DAT) imaging with 99mTc-TRODAT-1 revealed a nonsignificantly increased DAT uptake, suggesting a normal presynaptic nigrostriatal dopaminergic terminal.

Conclusion:

We suggest that significant heterogeneity can be found in WD patients and a normal presynaptic dopaminergic pathway may occur in some patients, even those with typical akinetic-rigid syndrome and evidence of substantia nigra involvement in the brain on MRI.

Résumé:

RÉSUMÉ:Introduction:

Dans la maladie de Wilson (MW), l'imagerie par résonance magnétique (IRM) du cerveau montre une augmentation de l'intensité du signal sur les images pondérées en T2 dans les noyaux lenticulaires, le thalamus et le tronc cérébral incluant la substance noire. Une réponse thérapeutique médiocre à la lévodopa dans la MW suggère que le mécanisme est une anomalie postsynaptique. Cependant la tomographie par émission de positons montre une implication de la voie dopaminergique présynaptique nigrostriée.

Observation:

Nous rapportons les manifestations cliniques observées chez un cas de MW présentant un syndrome akinéto-rigide et un retard à initier le mouvement. L'IRM du cerveau a montré une augmentation de l'intensité du signal dans la région de la substance noire ainsi que des lésions du noyau lenticulaire, du noyau caudé, de l'avant-mur, du noyau amygdalien et du thalamus. Cependant, l'imagerie du transporteur de la dopamine par le 99mTc-TRODAT-1 a montré une captation DAT augmentée de façon non significative suggérant que la terminaison dopaminergique nigrostriée présynaptique est normale.

Conclusion:

Nous suggérons qu'il existe une hétérogénéité significative chez les patients atteints de la MW et que la voie dopaminergique présynaptique peut être normale chez certains de ces patients, même en présence d'un syndrome akinéto-rigide typique et de l'observation d'une lésion de la substance noire à l'IRM.

Type
Case Report
Copyright
Copyright © The Canadian Journal of Neurological 2003

References

REFERENCES

1. Walshe, JM. Wilson’s disease In: Vinken, PJ, Bruyn, GW, Klawans, HL,(Eds.). Handbook of Clinical Neurology. Vol 49. Extrapyramidal Disorders. Amsterdam: North-Holland. 1986:223238.Google Scholar
2. Scheinberg, IH, Sternlieb, I. Wilson’s disease. Philadelphia: WB Saunders. 1984: 2531 and 64–69.Google Scholar
3. Marsden, CD. Wilson’s disease. Q J Med 1987;248:959966.Google Scholar
4. Duchen, LW, Jacobs, J. Nutritional deficiences and metabolic disorders. In: Adams, JH, Duchen, LW (Eds.). Greenfield’s Neuropathology. 5th ed. London: Edward Arnold;1992:838841.Google Scholar
5. Williams, JB, Walshe, JM. Wilson’s disease: an analysis of the cranial computerized tomographic appearances found in 60 patients and the changes in response to treatment with chelating agents. Brain 1981;104:735752.Google Scholar
6. Roh, JK, Lee, TG, Wie, BA, et al. Initial and follow up brain MRI findings and correlation with the clinical course in Wilson’s disease. Neurology 1994;44:10641068.Google Scholar
7. Aisen, A, Martel, W, Gabrielsen, T, et al. Wilson’s disease of the brain: MR imaging. Radiology 1985;157:137141.Google Scholar
8. Huang, CC, Chu, NS. Acute dystonia with thalamic and brainstem lesions after initial penicillamine treatment in Wilson’s disease. Eur Neurol 1998;39:3237.Google Scholar
9. Morgan, JP, Preziosi, TJ, Bianchine, JR. Ineffectiveness of L-DOPA as a supplement to penicillamine in a case of Wilson’s disease. Lancet 1970;2:659.Google Scholar
10. Snow, BJ, Bhatt, M, Martin, WRW, Li, D, Calne, DB. The nigrostriatal dopaminergic pathway in Wilson’s disease studied with positron emission tomography. J Neurol Neurosurg Psychiatry 1991;54:1217.Google Scholar
11. Oertel, WH, Tatsch, K, Schwavz, J, et al. Decrease of D2 receptors indicated by 123I-Iodobenzamide single-photon emission computed tomography relates to neurological deficit in treated Wilson’s disease. Ann Neurol 1992;32:743748.Google Scholar
12. Schlaug, G, Hefter, H, Nebeling, B, et al. Dopamine D2 receptor binding and cerebral glucose metabolism recover after D-penicillamine therapy in Wilson’s disease. J Neurol 1994;241:577584.Google Scholar
13. Oder, W, Brucke, T, Kollegger, H, et al. Dopamine D2 receptor binding is reduced in Wilson’s disease: correlation of neurological deficits with striatal 123I-iodobenzamide binding. J Neural Trans 1996;103:10931103.Google Scholar
14. Jeon, B, Kim, JM, Jeong, JM, et al. Dopamine transporter imaging with [123I]-β-CIT demonstrates presynaptic nigrostriatal dopaminergic damage in Wilson’s disease. J Neurol Neurosurg Psychiatry 1998;65:6064.CrossRefGoogle ScholarPubMed
15. Kung, HF, Kim, HJ, Kung, MP, et al. Imaging of dopamine transporters in humans with technetium-99m TRODAT-1. Eur J Nucl Med 1996;23:15271530.CrossRefGoogle ScholarPubMed
16. Barthel, H, Sorger, D, Kuhn, HJ, et al. Differential alteration of the nigrostriatal dopaminergic system in Wilson’s disease investigated with [123I]-β-CIT and high-resolution SPECT. Eur J Nucl Med 2001;28:16561663.Google Scholar
17. Bettin, S, Kampfer, I, Seese, A, et al. Striatal uptake of I-123-β-CITand I-123-IBZM in patients with extrapyramidal symptoms. Nuklearmedizin 1997;36:167172.Google Scholar
18. Mozley, PD, Schneider, JS, Acton, PD, et al. Binding of [99mTc]-TRODAT-1 to dopamine transporters in patients with Parkinson’s disease and in healthy volunteers. J Nucl Med 2000;41:584589.Google Scholar
19. Tzen, KY, Lu, CS, Yen, TC, Wey, SP, Ting, G. Differential diagnosis of Parkinson’s disease and vascular parkinsonism by [99mTc]-TRODAT-1. J Nucl Med 2001;42:408413.Google Scholar
20. Yen, TC, Lu, CS, Tzen, KY, et al. Decreased dopamine transporter binding in Machado-Joseph disease. J Nucl Med 2000;41:994998.Google Scholar
21. Huang, CC, Chu, NS. Wilson’s disease: clinical analysis of 71 cases and comparison with previous Chinese series. J Formosan Med Assoc 1992;91:502507.Google Scholar
22. Westermark, K, Tedroff, J, Thuomas, KA, et al. Neurological Wilson’s disease studied with magnetic resonance imaging and with positron emission tomography using dopaminergic markers. Mov Disord 1995;10:596603.Google Scholar
23. Barbeau, A, Friesen, H. Treatment of Wilson’s disease with L-DOPA after failure with penicillamine. Lancet 1970;1:11801181.Google Scholar
24. Berio, A. Favorable results from the association of L-DOPA, amantadine and penicillamine in a child with Wilson’s disease. IRCS J Med Sci 1974;2:1326.Google Scholar
25. Huang, CC, Yen, TC, Weng, YH, Lu, CS. Normal dopamine transporter binding in dopa responsive dystonia. J Neurol 2002;249:10161020.Google Scholar
26. Huang, CC, Chu, NS. Psychosis and epileptic seizures in Wilson’s disease with predominantly white matter lesions in the frontal lobe. Parkinson Relat Disord 1995; 1:5358.Google Scholar