Hostname: page-component-6b989bf9dc-zrclq Total loading time: 0 Render date: 2024-04-15T04:15:32.566Z Has data issue: false hasContentIssue false

Diabetes, Intracranial Stenosis and Microemboli in Asymptomatic Carotid Stenosis

Published online by Cambridge University Press:  23 September 2014

Thach D. Lam
Affiliation:
Schulich School of Medicine and Dentistry, University of Western Ontario, London
Stephanie Lammers
Affiliation:
Schulich School of Medicine and Dentistry, University of Western Ontario, London Queen's University School of Medicine, Kingston, Ontario
Claudio Munoz
Affiliation:
Stroke Prevention and Atherosclerosis Research Centre, Robarts Research Institute, University of Western Ontario, London
Arturo Tamayo
Affiliation:
Stroke Prevention and Atherosclerosis Research Centre, Robarts Research Institute, University of Western Ontario, London 4. Brandon Health Sciences Centre, Brandon, Manitoba, Canada
J. David Spence*
Affiliation:
Schulich School of Medicine and Dentistry, University of Western Ontario, London Stroke Prevention and Atherosclerosis Research Centre, Robarts Research Institute, University of Western Ontario, London
*
Stroke Prevention and Atherosclerosis Research Centre, Siebens-Drake Building, Robarts Research Institute, 1400 Western Road, London, Ontario, n6G 2v2, Canada. email: dspence@robarts.ca.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

The risk of stroke in patients with asymptomatic carotid stenosis (ACS) is now so low that it is important to have methods to identify those patients most likely to benefit from intervention, or who may require special consideration in choice of medical therapy. We studied the prediction of stroke, death or transient ischemic attacks (stroke/death/TIA) in patients with ACS by intracranial arterial stenosis, and microemboli on transcranial Doppler (TCD), and the effect of diabetes mellitus on microemboli, intracranial stenosis and risk of events.

Methods:

Patients with ACS > 60% by Doppler ultrasound were recruited from the Stroke Prevention Clinic of University Hospital, London, Canada. All 339 participants underwent TCD for detection of intracranial stenosis and detection of microemboli, and carotid ultrasound to measure extracranial stenosis and total carotid plaque area. Participants were followed for three years, to determine the risk of stroke/death/TIA.

Results:

Stroke/death/TIA occurred in 38% of patients with microemboli versus 10% without (p=0.0001), and in 18% of patients with intracranial stenosis, versus 10% without (p=0.042). Diabetics were significantly more likely to have intracranial stenosis (45% vs. 29%, p =0.014), microemboli (38% vs. 10%, p <0.0001), and had significantly higher risk of stroke/death/TIA over three years (21% vs. 11% without; p=0.024). Survival free of stroke, TIA or death was significantly better without microemboli or intracranial stenosis (p<0.0001).

Conclusions:

Diabetes, microemboli and intracranial stenosis predicted higher risk of stroke, death or TIA than did extracranial stenosis or total plaque area; diabetics may need more intensive therapy.

Résumé:

Résumé:Contexte:

Le risque d'accident vasculaire cérébral (AvC) chez les patients porteurs d'une sténose carotidienne asymptomatique (SCA) est maintenant si faible qu'il est important d'établir des critères pour identifier les patients qui sont les plus susceptibles de bénéficier d'une intervention ou chez qui on doit porter une attention particulière au choix du traitement médical. nous avons examiné si la présence d'une sténose artérielle intracrânienne et de microembolies au Doppler transcrânien (DTC) étaient des facteurs de prédiction de l'AvC, du décès ou d'accès ischémiques transitoires (AIT) (AvC/décès/AIT) chez des patients porteurs d'une SCA ainsi que l'effet du diabète sur les microembolies, la sténose intracrânienne et le risque d'événements.

Méthode:

Nous avons recruté des patients présentant une SCA > 60% à l'échographie Doppler à la clinique de prévention de l'AvC à l'hôpital universitaire de London, en Ontario, au Canada. Les 339 participants ont subi un DTC pour la détection de la sténose intracrânienne et de microembolies et une échographie carotidienne pour mesurer la sténose extracrânienne et la surface totale de plaque. Les participants ont été suivis pendant 3 ans afin de déterminer le risque d'AvC/décès/AIT.

Résultats:

Un AvC/décès/AIT est survenu chez 38% des patients avec microembolies et chez 10% de ceux qui n'en avaient pas (p = 0,0001) ainsi que chez 18% des patients porteurs d'une sténose intracrânienne et chez 10% de ceux qui n'en avaient pas (p = 0,042). Les diabétiques étaient significativement plus susceptibles de présenter une sténose intracrânienne que ceux qui n'étaient pas diabétiques (45% par opposition à 29%; p = 0,014), des microembolies (38% par opposition à 10%; p < 0,0001) et ils avaient un risque significativement plus élevé d'AvC/décès/AIT au cours des trois années d'observation (21% par opposition à 11%; p = 0,024). La survie sans AvC, AIT ou décès était significativement meilleure sans microembolies ou sténose intracrânienne (p < 0,0001).

Conclusions:

Le diabète, les microembolies et la sténose intracrânienne prédisaient un risque plus élevé d'AvC, de décès ou d'AIT que la sténose extracrânienne ou la surface totale de plaque. Il se peut que les diabétiques aient besoin d'un traitement plus énergique.

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2013

References

1. Bogiatzi, C, Cocker, MS, Beanlands, R, Spence, JD. Identifying high-risk asymptomatic carotids stenosis. expert Opin Med Diagnostics. 2012;6:139–51.Google Scholar
2. Cardona, P, Rubio, F, Martinez-Yelamos, S, Krupinski, J. Endarterectomy, best medical treatment or both for stroke prevention in patients with asymptomatic carotid artery stenosis. Cerebrovasc Dis. 2007;24 Suppl 1:126–33.Google Scholar
3. Spence, JD, Eliasziw, M, DiCicco, M, Hackam, DG, Galil, R, Lohmann, T. Carotid plaque area: a tool for targeting and evaluating vascular preventive therapy. Stroke. 2002;33:291622.Google Scholar
4. Spence, JD, Tamayo, A, Lownie, SP, Ng, WP, Ferguson, GG. Absence of microemboli on transcranial Doppler identifies low-risk patients with asymptomatic carotid stenosis. Stroke. 2005;36:2373–8.Google Scholar
5. Madani, A, Beletsky, V, Tamayo, A, Munoz, C, Spence, JD. High-risk asymptomatic carotid stenosis: ulceration on 3D ultrasound versus TCD microemboli. Neurology. 2011;77:744–50.CrossRefGoogle Scholar
6. Markus, HS, King, A, Shipley, M, et al. Asymptomatic embolisation for prediction of stroke in the Asymptomatic Carotid Emboli Study (ACES): a prospective observational study. Lancet Neurol. 2010;9:663–71.Google Scholar
7. Sacco, RL, Kargman, DE, Gu, Q, Zamanillo, MC. Race-ethnicity and determinants of intracranial atherosclerotic cerebral infarction. The Northern Manhattan Stroke Study. Stroke. 1995;26:1420.Google Scholar
8. Wong, LK. Global burden of intracranial atherosclerosis. Int J Stroke. 2006;1:1589.Google Scholar
9. Bae, HJ, Lee, J, Park, JM, et al. Risk factors of intracranial cerebral atherosclerosis among asymptomatics. Cerebrovasc Dis. 2007;24:355–60.Google Scholar
10. Caplan, LR, Gorelick, PB, Hier, DB. Race, sex and occlusive cerebrovascular disease: a review. Stroke. 1986;17:648–55.Google Scholar
11. Spence, JD, Coates, V, Li, H, et al. Effects of intensive medical therapy on microemboli and cardiovascular risk in asymptomatic carotid stenosis. Arch Neurol. 2010;67:1806.Google Scholar
12. Barnett, HJM, Taylor, DW, Eliasziw, M, et al. Benefit of carotid endarterectomy in patients with symptomatic moderate or severe carotid stenosis. N Engl J Med. 1998;339:141525.Google Scholar
13. Spence, JD, Hegele, RA. Noninvasive phenotypes of atherosclerosis: similar windows but different views. Stroke. 2004;35:649–53.Google Scholar
14. Executive Committee for the Asymptomatic Carotid Atherosclerosis Study. Endarterectomy for asymptomatic carotid artery stenosis. JAMA. 1995;272:1421–8.Google Scholar
15. Felberg, RA, Christou, I, Demchuk, AM, Malkoff, M, Alexandrov, AV. Screening for intracranial stenosis with transcranial Doppler: the accuracy of mean flow velocity thresholds. J Neuroimaging. 2002;12:914.CrossRefGoogle ScholarPubMed
16. Zhao, L, Barlinn, K, Sharma, VK, et al. Velocity criteria for intracranial stenosis revisited: an international multicenter study of transcranial Doppler and digital subtraction angiography. Stroke. 2011;42:342934.Google Scholar
17. Ringelstein, EB, Droste, DW, Babikian, VL, et al. Consensus on microembolus detection by TCD. International Consensus Group on Microembolus Detection. Stroke. 1998;29:7259.Google Scholar
18. Takahashi, W, Ohnuki, T, Ide, M, Takagi, S, Shinohara, Y. Stroke risk of asymptomatic intra- and extracranial large-artery disease in apparently healthy adults. Cerebrovasc Dis. 2006;22:263–70.Google Scholar
19. Chimowitz, MI, Lynn, MJ, Derdeyn, CP, et al. Stenting versus aggressive medical therapy for intracranial arterial stenosis. N Engl J Med. 2011;365:9931003.CrossRefGoogle ScholarPubMed
20. Droste, DW, Junker, K, Hansberg, T, Dittrich, R, Ritter, M, Ringelstein, EB. Circulating microemboli in 33 patients with intracranial arterial stenosis. Cerebrovasc Dis. 2002;13:2630.Google Scholar
21. Spence, JD, Eliasziw, M, DiCicco, M, Hackam, DG, Galil, R, Lohmann, T. Carotid plaque area: a tool for targeting and evaluating vascular preventive therapy. Stroke. 2002;33:291622.Google Scholar
22. Nathan, DM. Long-term complications of diabetes mellitus. N Engl J Med. 1993;328:167685.Google Scholar
23. Leung, SY, Ng, TH, Yuen, ST, Lauder, IJ, Ho, FC. Pattern of cerebral atherosclerosis in Hong Kong Chinese. Severity in intracranial and extracranial vessels. Stroke. 1993;24:779–86.Google Scholar
24. Kim, BJ, Lee, SH, Kang, BS, Yoon, BW, Roh, JK. Diabetes increases large artery diseases, but not small artery diseases in the brain. J Neurol. 2008;255:117681.Google Scholar
25. Wilcox, R, Bousser, MG, Betteridge, DJ, et al. Effects of pioglitazone in patients with type 2 diabetes with or without previous stroke: results from PROactive (PROspective pioglitAzone Clinical Trial In macro Vascular Events 04). Stroke. 2007;38:865–73.Google Scholar
26. Selvin, E, Steffes, MW, Zhu, H, et al. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N Engl J Med. 2010;362:80011.Google Scholar