Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-16T06:52:32.329Z Has data issue: false hasContentIssue false

Spontaneous speech intelligibility: early cochlear implanted children versus their normally hearing peers at seven years of age

Published online by Cambridge University Press:  01 December 2021

Nathalie BOONEN*
Affiliation:
Computational Linguistics, & Psycholinguistics Research Centre, University of Antwerp, Antwerp, Belgium E-mail: n.boonen@fontys.nl
Hanne KLOOTS
Affiliation:
Computational Linguistics, & Psycholinguistics Research Centre, University of Antwerp, Antwerp, Belgium E-mail: hanne.kloots@uantwerpen.be
Pietro NURZIA
Affiliation:
Computational Linguistics, & Psycholinguistics Research Centre, University of Antwerp, Antwerp, Belgium E-mail: pietro.nurzia@uantwerpen.be
Steven GILLIS
Affiliation:
Computational Linguistics, & Psycholinguistics Research Centre, University of Antwerp, Antwerp, Belgium E-mail: steven.gillis@uantwerpen.be
*
Corresponding author. Nathalie Boonen, Computational Linguistics, & Psycholinguistics Research Centre, University of Antwerp, Antwerp, Belgium. E-mail: n.boonen@fontys.nl

Abstract

Speaking intelligibly is an important achievement in children’s language development. How far do congenitally severe-to-profound hearing-impaired children who received a cochlear implant (CI) in the first two years of their life advance on the path to intelligibility in comparison to children with typical hearing (NH)? Spontaneous speech samples of children with CI and children with NH were orthographically transcribed by naïve transcribers. The entropy of the transcriptions was computed to analyze their degree of uniformity. The same samples were also rated on a continuous rating scale by another group of adult listeners. The transcriptions of the NH children’s speech were more uniform, i.e., had significantly lower entropy, than those of the CI children, suggesting that the latter group displayed lower intelligibility. This was confirmed by the ratings on the continuous scale. Despite the relatively restricted age ranges, older children reached better intelligibility scores in both groups.

Type
Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AlSanosi, A., & Hassan, S. M. (2014). The effect of age at cochlear implantation outcomes in Saudi children. International Journal of Pediatric Otorhinolaryngology, 78(2), 272276. 10.1016/j.ijporl.2013.11.021 CrossRefGoogle ScholarPubMed
Barnard, J., Fisher, L., Johnson, K., Eisenberg, L., Wang, N.-Y., Quittner, A., Carson, C., Niparko, J. (2015). A prospective longitudinal study of U.S. children unable to achieve open-set speech recognition 5 years after cochlear implantation. Otology, & Neurotology, 36(6), 985992. doi:10.1097/MAO.0000000000000723 CrossRefGoogle ScholarPubMed
Baudonck, N., Dhooge, I., & Van Lierde, K. (2010). Intelligibility of hearing impaired children as judged by their parents: A comparison between children using cochlear implants and children using hearing aids. International Journal of Pediatric Otorhinolaryngology, 74, 13101315. doi:10.1016/j.ijporl.2010.08.011 CrossRefGoogle ScholarPubMed
Baudonck, N. L. H., Buekers, R., Gillebert, S., & Van Lierde, K. M. (2009). Speech intelligibility of Flemish children as judged by their parents. Folia Phoniatrica et Logopaedica, 61(5), 288295. doi: 10.1159/000235994 CrossRefGoogle ScholarPubMed
Bavin, E., Sarant, J., Leigh, G., Prendergast, L., Busby, P., & Peterson, C. (2018). Children with cochlear implants in infancy: predictors of early vocabulary. International Journal of Communication Disorders, 53(4), 788798. doi: 10.1111/1460-6984.12383 CrossRefGoogle ScholarPubMed
Boons, T., Brokx, J. P., Dhooge, I., Frijns, J. H., Peeraer, L., Vermeulen, A., Wouters, J., & van Wieringen, A. (2012). Predictors of spoken language development following pediatric cochlear implantation. Ear, & Hearing, 33(5), 617639. doi: 10.1097/AUD.0b013e3182503e47 CrossRefGoogle ScholarPubMed
Boons, T., De Raeve, L., Langereis, M., Peeraer, L., Wouters, J., & van Wieringen, A. (2013). Expressive vocabulary, morphology, syntax and narrative skills in profoundly deaf children after early cochlear implantation. Research in Developmental Disabilities, 34(6), 20082022. doi: 10.1016/j.ridd.2013.03.003 CrossRefGoogle ScholarPubMed
Bowen, C. (2011). Table1: Intelligibility. Retrieved from http://www.speech-language-therapy.com/ Google Scholar
Bruijnzeel, H., Ziylan, F., Stegeman, I., Topsakal, V., & Grolman, W. (2016). A systematic review to define the speech and language benefit of early (<12 months) pediatric cochlear implantation. Audiology and Neurotology, 21, 113126. doi: 10.1159/000443363 CrossRefGoogle ScholarPubMed
Calmels, M.-N., Saliba, I., Wanna, G., Cochard, N., Fillaux, J., Deguine, O., & Fraysse, B. (2004). Speech perception and speech intelligibility in children after cochlear implantation. International Journal of Pediatric Otorhinolaryngology, 68(3), 347351. doi: 10.1016/j.ijporl.2003.11.006 CrossRefGoogle ScholarPubMed
Castellanos, I., Kronenberger, W. G., Beer, J., Henning, S. C., Colson, B. G., & Pisoni, D. B. (2014). Preschool speech intelligibility and vocabulary skills predict long-term speech and language outcomes following cochlear implantation in early childhood. Cochlear Implants International, 15(4), 200210. doi: 10.1179/1754762813y.0000000043 CrossRefGoogle ScholarPubMed
Chin, S. B., Bergeson, T. R., & Phan, J. (2012). Speech intelligibility and prosody production in children with cochlear implants. Journal of Communication Disorders, 45(5), 355366. doi: 10.1016/j.jcomdis.2012.05.003 CrossRefGoogle ScholarPubMed
Chin, S. B., & Kuhns, M. J. (2014). Proximate factors associated with speech intelligibility in children with cochlear implants: A preliminary study. Clinical Linguistics, & Phonetics, 28(7-8), 532542. doi: 10.3109/02699206.2014.926997 CrossRefGoogle ScholarPubMed
Chin, S. B., & Tsai, P. L. (2001). Speech intelligibility of children with cochlear implants and children with normal hearing: A preliminary report. Progress Report, Indiana University, Bloomington, Indiana.Google Scholar
Chin, S. B., Tsai, P. L., & Gao, S. (2003). Connected speech intelligibility of children with cochlear implants and children with normal hearing. American Journal of Speech-Language Pathology, 12(4), 440451. doi: 10.1044/1058-0360(2003/090)CrossRefGoogle ScholarPubMed
Cox, R. M., & McDaniel, D. M. (1989). Development of the speech intelligibility rating (SIR) test for hearing aid comparisons. Journal of Speech, Language, and Hearing Research, 32(2), 347352. doi: 10.1044/jshr.3202.347 CrossRefGoogle ScholarPubMed
De Raeve, L. (2010). A longitudinal study on auditory perception and speech intelligibility in deaf children implanted younger than 18 months in comparison to those implanted at later ages. Otology, & Neurotology, 31(8), 12611267. doi: 10.1097/MAO.0b013e3181f1cde3 CrossRefGoogle ScholarPubMed
Dettman, S., Dowell, R., Choo, D., Arnott, W., Abrahams, Y., Davis, A., Dornan, D., Leigh, J., Constantinescu, G., Cowan, R., & Briggs, R. (2016). Long-term communication outcomes for children receiving cochlear implants younger than 12 months: a multicenter study. Otology, & Neurotology, 37, e82e95. doi: 10.1097/MAO.0000000000000915.CrossRefGoogle ScholarPubMed
Drennan, W., & Rubinstein, J. (2008). Music perception in cochlear implant users and its relationship with psychophysical capabilities. Journal of Rehabilitation Research and Development, 45, 779790. doi:10.1682/JRRD.2007.08.0118 CrossRefGoogle ScholarPubMed
Duchesne, L., & Marschark, M. (2019). Effects of age at cochlear implantation on vocabulary and grammar: a review of the evidence. American Journal of Speech-Language Pathology, 28, 16731691. doi: 10.1044/2019_AJSLP-18-0161 CrossRefGoogle ScholarPubMed
Ertmer, D. J. (2010). Relationships between speech intelligibility and word articulation scores in children with hearing loss. Journal of Speech, Language, and Hearing Research, 53(5), 10751086. doi: 10.1044/2019_AJSLP-18-0161 CrossRefGoogle ScholarPubMed
Faes, J., Gillis, J., & Gillis, S. (2015). Syntagmatic and paradigmatic development of cochlear implanted children in comparison with normally hearing peers up to age 7. International Journal of Pediatric Otorhinolaryngology, 79, 15331540. doi: 10.1016/j.ijporl.2015.07.005 CrossRefGoogle ScholarPubMed
Faes, J., Gillis, J., & Gillis, S. (2016). Phonemic accuracy development in children with cochlear implants up to five years of age by using Levenshtein distance. Journal of Communication Disorders, 59, 4058. doi: 10.1016/j.jcomdis.2015.09.004 CrossRefGoogle ScholarPubMed
Fagan, M., Eisenberg, L., & Johnson, K. (2020). Investigating early pre-implant predictors of language and cognitive development in children with cochlear implants. In Marschark, M., & Knoors, H. (Eds.), The Oxford handbook of deaf studies in learning and cognition (pp. 4659). Oxford: Oxford University Press. doi: 10.1093/oxfordhb/9780190054045.013.3 Google Scholar
Fang, H. Y., Ko, H. C., Wang, N. M., Fang, T. J., Chao, W. C., Tsou, Y. T., & Wu, C. M. (2014). Auditory performance and speech intelligibility of Mandarin-speaking children implanted before age 5. International Journal of Pediatric Otorhinolaryngology, 78(5), 799803. doi: 10.1016/j.ijporl.2014.02.014 CrossRefGoogle ScholarPubMed
Flipsen, P. (2006). Measuring the intelligibility of conversational speech in children. Clinical Linguistics, & Phonetics, 20(4), 303312. doi: 10.1080/02699200400024863 CrossRefGoogle ScholarPubMed
Flipsen, P. (2008). Intelligibility of spontaneous conversational speech produced by children with cochlear implants: A review. International Journal of Pediatric Otorhinolaryngology, 72(5), 559564. doi: 10.1016/j.ijporl.2008.01.026 CrossRefGoogle ScholarPubMed
Flipsen, P., & Colvard, L. G. (2006). Intelligibility of conversational speech produced by children with cochlear implants. Journal of Communication Disorders, 39(2), 93108. doi: 10.1016/j.jcomdis.2005.11.001 CrossRefGoogle ScholarPubMed
Freeman, V., Pisoni, D. B., Kronenberger, W. G., & Castellanos, I. (2017). Speech intelligibility and psychosocial functioning in deaf children and teens with cochlear implants. Journal of Deaf Studies and Deaf Education, 22(3), 278289. doi: 10.1093/deafed/enx001 CrossRefGoogle ScholarPubMed
Frinsel, F., Kingma, A., Swarte, F., & Gooskens, C. (2015). Predicting the asymmetric intelligibility between spoken Danish and Swedish using conditional entropy. Tijdschrift voor Skandinavistiek, 34(2), 120138.Google Scholar
Geers, A. E., & Nicholas, J. G. (2013). Enduring advantages of early cochlear implantation for spoken language development. Journal of Speech, Language, and Hearing Research, 56(2), 643655. doi: 10.1044/1092-4388(2012/11-0347)CrossRefGoogle ScholarPubMed
Geers, A., Nicholas, J., Tobey, E., & Davidson, L. (2016). Persistent language delay versus late language emergence in children with early cochlear implantation. Journal of Speech, Language and Hearing Research, 59, 155170. doi: 10.1044/2015_JSLHR-H-14-0173 CrossRefGoogle ScholarPubMed
Gillis, S. (2018). Speech and language in congenitally deaf children with a cochlear implant. In Bar-On, A., & Ravid, D. (Eds.), Handbook of Communication Disorders: Theoretical, Empirical, and Applied Linguistic Perspectives (pp. 763790). Berlin: Mouton De Gruyter. doi: 10.1515/9781614514909-038 Google Scholar
Gordon-Brannan, M., & Hodson, B. W. (2000). Intelligibility/severity measurements of prekindergarten children’s speech. American Journal of Speech-Language Pathology, 9(2), 141150. doi: 10.1044/1058-0360.0902.141 CrossRefGoogle Scholar
Grandon, B., Martinez, M.-J., Samson, A., & Vilain, A. (2020). Long-term effects of cochlear implantation on the intelligibility of speech in French-speaking children. Journal of Child Language, 47(4), 881892. doi: 10.1017/S0305000919000837 CrossRefGoogle ScholarPubMed
Habib, M. G., Waltzman, S. B., Tajudeen, B., & Svirsky, M. A. (2010). Speech production intelligibility of early implanted pediatric cochlear implant users. International Journal of Pediatric Otorhinolaryngology, 74(8), 855859. doi: 10.1016/j.ijporl.2010.04.009 CrossRefGoogle ScholarPubMed
Henderson, C. (1975). Best linear unbiased estimation and prediction under a selection model. Biometrics, 31(2), 423447. doi: 10.2307/2529430 CrossRefGoogle Scholar
Hollingshead, A. (1975). Four-factor index of social status. Yale University, New Haven, CT.Google Scholar
Houston, D., Beer, J., Bergeson, T., Chin, S., Pisoni, D., & Miyamoto, R. (2012). The ear is connected to the brain: some new directions in the study of children with cochlear implants at Indiana University. Journal of the American Academy of Audiology, 23, 446463. doi: 10.3766/jaaa.23.6.7 Google Scholar
Hustad, K., Mahr, T., Natzke, P., & Rathouz, P. (2020). Development of speech intelligibility between 30 and 47 months in typically developing children: A cross-sectional study of growth. Journal of Speech, Language, and Hearing Research, 63, 16751687. doi: 10.1044/2020_JSLHR-20-00008 CrossRefGoogle ScholarPubMed
Kent, R. D., Miolo, G., & Bloedel, S. (1994). The intelligibility of children’s speech: A review of evaluation procedures. American Journal of Speech-Language Pathology, 3(2), 8195. doi: 10.1044/1058-0360.0302.81 CrossRefGoogle Scholar
Khwaileh, F. A., & Flipsen, P. (2010). Single word and sentence intelligibility in children with cochlear implants. Clinical Linguistics, & Phonetics, 24(9), 722733. doi: 10.3109/02699206.2010.490003 CrossRefGoogle ScholarPubMed
Lagerberg, T. B., Asberg, J., Hartelius, L., & Persson, C. (2014). Assessment of intelligibility using children’s spontaneous speech: Methodological aspects. International Journal of Language, & Communication Disorders, 49(2), 228239. doi: 10.1111/1460-6984.12067 CrossRefGoogle ScholarPubMed
Lejeune, B., & Demanez, L. (2006). Speech discrimination and intelligibility: Outcome of deaf children fitted with hearing aids or cochlear implants. B-ENT, 2(2), 6368.Google ScholarPubMed
Liu, X., Rong, J., & Liu, X. (2008). Best linear unbiased prediction for linear combinations in general mixed linear models. Journal of Multivariate Analysis, 99(8), 15031517. doi: 10.1016/j.jmva.2008.01.004 CrossRefGoogle Scholar
MacWhinney, B. (2000). The CHILDES project: Tools for analyzing talk (3rd ed.). Mahwah, NJ: Lawrence Erlbaum Associates. doi: 10.21415/3mhn-0z89 Google Scholar
Mayer, M. (1969). Frog, where are you? New York: Penguin Putnam Inc. doi: 10.1080/01638539909545082 Google Scholar
Miller, N. (2013). Measuring up to speech intelligibility. International Journal of Language, & Communication Disorders, 48(6), 601612. doi: 10.1111/1460-6984.12061 CrossRefGoogle ScholarPubMed
Moberg, J., Gooskens, C. S., Nerbonne, J., & Vaillette, N. (2007). Conditional entropy measures intelligibility among related languages. In Dirix, P., Schuurman, I., Vandeghinste, V., & Van Eynde, F. (Eds.), Computational Linguistics in the Netherlands 2006: Selected papers from the 17th CLIN Meeting (pp. 5166). Utrecht: LOT.Google Scholar
Montag, J. L., AuBuchon, A. M., Pisoni, D. B., & Kronenberger, W. G. (2014). Speech intelligibility in deaf children after long-term cochlear implant use. Journal of Speech, Language, and Hearing Research, 57(6), 23322343. doi: 10.1044/2014_JSLHR-H-14-0190 CrossRefGoogle ScholarPubMed
Nicholas, J. G., & Geers, A. E. (2007). Will they catch up? The role of age at cochlear implantation in the spoken language development of children with severe to profound hearing loss. Journal of Speech, Language, and Hearing Research, 50(4), 10481062. doi: 10.1044/1092-4388(2007/073)CrossRefGoogle ScholarPubMed
Niparko, J. K., Tobey, E. A., Thal, D. J., Eisenberg, L. S., Wang, N. Y., Quittner, A. L., & Fink, N. E. (2010). Spoken language development in children following cochlear implantation. Journal of the American Medical Association, 303(15), 14981506. doi: 10.1001/jama.2010.451 CrossRefGoogle ScholarPubMed
Nittrouer, S., Caldwell-Tarr, A., Moberly, A. C., & Lowenstein, J. H. (2014). Perceptual weighting strategies of children with cochlear implants and normal hearing. Journal of Communication Disorders, 52, 111133. doi: 10.1016/j.jcomdis.2014.09.003 CrossRefGoogle ScholarPubMed
O’Donoghue, G. (2013). Cochlear implants — Science, serendipity, and success. The New England Journal of Medicine, 369(13), 11901193. doi: 10.1056/NEJMp1310111 CrossRefGoogle ScholarPubMed
Osberger, M. J., Robbins, A. M., Todd, S. L., & Riley, A. I. (1994). Speech intelligibility of children with cochlear implants. The Volta Review, 96(5), 169180. doi: 10.1044/jshr.3601.186.Google Scholar
Peng, S.-C., Spencer, L. J., & Tomblin, J. B. (2004). Speech intelligibility of pediatric cochlear implant recipients with 7 years of device experience. Journal of Speech, Language, and Hearing Research, 47(6), 12271236. doi: 10.1044/1092-4388(2004/092)CrossRefGoogle ScholarPubMed
Qualtrics. (2005) (Version December 2018). Provo, Utah, USA. Retrieved from www.qualtrics.com Google Scholar
Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379423. doi: 10.1002/j.1538-7305.1948.tb01338.x CrossRefGoogle Scholar
Strömbergsson, S., Holm, K., Edlund, J., Lagerberg, T., & McAllister, A. (2020). Audience response system-based evaluation of intelligibility of children’s connected speech – validity, reliability and listener differences. Journal of Communication Disorders, 87, 106037. doi:10.1016/j.jcomdis.2020.106037 CrossRefGoogle ScholarPubMed
Subtelny, J. (1977). Assessment of speech with implications for training. In Bess, F. (Ed.), Childhood deafness: Causation, assessment, and management (pp. 183194). New York: Grune, & Stratton.Google Scholar
Svirsky, M., Chin, S., & Jester, A. (2007). The effects of age at implantation on speech intelligibility in pediatric cochlear implant users: clinical outcomes and sensitive periods. Audiological Medicine, 5(4), 293306. doi: 10.1080/16513860701727847 CrossRefGoogle Scholar
Szagun, G., & Stumper, B. (2012). Age or experience? The influence of age at implantation and social and linguistic environment on language development in children with cochlear implants. Journal of Speech, Language, and Hearing Research, 55, 16401654. doi: 10.1044/1092-4388(2012/11-0119)CrossRefGoogle ScholarPubMed
Toe, D. M., & Paatsch, L. E. (2013). The conversational skills of school-aged children with cochlear implants. Cochlear Implants International, 14(2), 6779. doi: 10.1179/1754762812y.0000000002 CrossRefGoogle ScholarPubMed
Tye-Murray, N., Spencer, L., & Woodworth, G. G. (1995). Acquisition of speech by children who have prolonged cochlear implant experience. Journal of Speech and Hearing Research, 38(2), 327337. doi: 10.1044/jshr.3802.327 CrossRefGoogle ScholarPubMed
van Heuven, V. J. (2008). Making sense of strange sounds: (Mutual) intelligibility of related language varieties. A review. International Journal of Humanities and Arts Computing, 2(1-2), 3962. doi: 10.3366/e1753854809000305 CrossRefGoogle Scholar
Van Lierde, K. M., Vinck, B. M., Baudonck, N., De Vel, E., & Dhooge, I. (2005). Comparison of the overall intelligibility, articulation, resonance, and voice characteristics between children using cochlear implants and those using bilateral hearing aids: A pilot study. International Journal of Audiology, 44(8), 452465. doi: 10.1080/14992020500189146 CrossRefGoogle ScholarPubMed
Verhoeven, J., Hide, O., De Maeyer, S., Gillis, S., & Gillis, S. (2016). Hearing impairment and vowel production. A comparison between typically developing, hearing-aided and cochlear implanted Dutch children. Journal of Communication Disorders, 59, 2439. doi: 10.1016/j.jcomdis.2015.10.007 CrossRefGoogle Scholar
Weiss, C. E. (1982). Weiss intelligibility test. Tigard: CC Publications.Google Scholar
Whitehill, T. L., & Ciocca, V. (2000). Perceptual-phonetic predictors of single-word intelligibility: A study of Cantonese dysarthria. Journal of Speech, Language, and Hearing Research, 43(6), 14511465. doi: 10.1044/jslhr.4306.1451 CrossRefGoogle ScholarPubMed
Wie, O. B. (2010). Language development in children after receiving bilateral cochlear implants between 5 and 18 months. International Journal of Pediatric Otorhinolaryngology, 74(11), 12581266. doi: 10.1016/j.ijporl.2010.07.026 CrossRefGoogle ScholarPubMed
Wie, O., von Koss Torkildsen, J., Schauber, S., Busch, T., & Litovsky, R. (2020). Long-term language development in children with early simultaneous bilateral cochlear implants. Ear, & Hearing, 41(5), 12941305. doi: 10.1097/AUD.0000000000000851 CrossRefGoogle ScholarPubMed
Yanbay, E., Hickson, L., Scarinci, N., Constantinescu, G., & Dettman, S. J. (2014). Language outcomes for children with cochlear implants enrolled in different communication programs. Cochlear Implants International, 15(3), 121135. doi: 10.1179/1754762813y.0000000062 CrossRefGoogle ScholarPubMed
Young, G. A., & Killen, D. H. (2002). Receptive and expressive language skills of children with five years of experience using a cochlear implant. Annals of Otology, Rhinology, and Laryngology, 111(9), 802810. doi: 10.1177/000348940211100908 CrossRefGoogle ScholarPubMed