Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-11T18:32:14.733Z Has data issue: false hasContentIssue false

A Radiocarbon Perspective on Greenland Ice-Core Chronologies: Can we Use Ice Cores for 14C Calibration?

Published online by Cambridge University Press:  18 July 2016

John Southon*
Affiliation:
Earth System Science Department, University of California, Irvine, California 92697, USA. Email: jsouthon@uci.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Some of the most valuable paleoclimate archives yet recovered are the multi-proxy records from the Greenland GISP2 and GRIP ice cores. The crucial importance of these data arises in part from the strong correlations that exist between the Greenland δ18O records and isotopic or other proxies in numerous other Northern Hemisphere paleoclimate sequences. These correlations could, in principle, allow layer-counted ice-core chronologies to be transferred to radiocarbon-dated paleoclimate archives, thus providing a 14C calibration for the Last Glacial Maximum and Isotope Stage 3, back to the instrumental limits of the 14C technique. However, this possibility is confounded by the existence of numerous different chronologies, as opposed to a single (or even a “best”) ice-core time scale. This paper reviews how the various chronologies were developed, summarizes the differences between them, and examines ways in which further research may allow a 14C calibration to be established.

Type
Articles
Copyright
Copyright © The Arizona Board of Regents on behalf of the University of Arizona 

References

Alley, RB, Meese, DA, Shuman, CA, Gow, AJ, Taylor, KC, Grootes, PM, White, JC, Ram, M, Waddington, ED, Mayewski, PA, Zielinski, GA. 1993. Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362:527–9.Google Scholar
Alley, RB, Shuman, CA, Meese, DA, Gow, AJ, Taylor, KC, Cuffey, KM, Fitzpatrick, JJ, Grootes, PM, Zielinski, GA, Ram, M, Spinelli, G, Elder, B. 1997. Visual-stratigraphic dating of the GISP2 ice core: basis, reproducibility and application. Journal of Geophysical Research 102:26,36781.Google Scholar
Alley, RB, Anandakrishnan, S, Jung, P. 2001. Stochastic resonance in the North Atlantic. Paleoceanography 16:190–8Google Scholar
Bard, E, Raisbeck, GM, Jouzel, J. 1997. Solar modulation of cosmogenic nuclide production over the last millennium: comparisons between 14C and 10Be. Earth and Planetary Science Letters 150:453–62.Google Scholar
Bay, RC, Bramall, N, Price, PB. 2003. Ice logging with light and sound. Eos 84:7982.Google Scholar
Beck, WJ, Richards, DA, Edwards, RL, Silverman, BW, Smart, PL, Donahue, DJ, Herrera-Osterheld, S, Burr, GS, Calsoyas, L, Jull, AJT, Biddulph, D. 2000. Extremely large variations of atmospheric 14C concentrations during the last glacial period. Science 292:2453–8.Google Scholar
Behl, RJ, Kennett, J P. 1996. Brief interstadial events in the Santa Barbara Basin, NE Pacific, during the past 60 kyr. Nature 379:243–6.CrossRefGoogle Scholar
Bender, M, Sowers, T, Dickson, M-L, Orchado, J, Grootes, P, Mayewski, PA, Meese, DA. 1994. Climate correlations between Greenland and Antarctica during the past 100,000 years. Nature 372:663–6.Google Scholar
Bond, G, Showers, W, Cheseby, M, Lotti, R, Almasi, P, de-Menocal, P, Priore, P, Cullen, H, Hajdas, I, Bonani, G. 1997. A pervasive millennial-scale cycle in North Atlantic Holocene and Glacial climates. Science 278: 1256–66.Google Scholar
Brauer, A, Endres, C, Negendank, JFW. 1999. Lateglacial calendar year chronology based on annually laminated sediments from Lake Meerfelder Maar, Germany. Quaternary Science Reviews 61:1725.Google Scholar
Burns, SJ, Fleitmann, D, Matter, A, Kramers, J, Al-Subbary, AA. 2003. Indian Ocean climate and an absolute chronology over Dansgaard/Oeschger events 9 to 13. Science 301:1365–7.Google Scholar
Castagnoli, GC, Albrecht, A, Beer, J, Bonino, G, Shen, CH, Callegari, E, Taricco, C, Dittrich-Hannen, B, Kubik, P, Suter, M, Zhu, GM. 1995. Evidence for enhanced 10Be deposition in Mediterranean sediments 35 kyr BP. Geophysical Research Letters 22:707–10.CrossRefGoogle Scholar
Charles, CD, Rind, D, Jouzel, J, Koster, RD, Fairbanks, RG. 1994. Glacial-interglacial changes in moisture sources for Greenland: influences on the ice-core record of climate. Science 263:508–11.Google Scholar
Clausen, H, Mammer, CU, Hvidberg, CS, Dahl-Jensen, D, Steffensen, JP. 1997. A comparison of the volcanic records over the past 4000 years from the Greenland Ice Core Project and Dye-3 Greenland ice cores. Journal of Geophysical Research 102:26,70723.CrossRefGoogle Scholar
Dansgaard, W, Johnsen, SJ, Clausen, HB, Dahl-Jensen, D, Gundestrup, NS, Hammer, CU, Hvidberg, CS, Stefffensen, J P, Sveinbjörnsdóttir, AE, Jouzel, J, Bond, G. 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364:218–20.CrossRefGoogle Scholar
Deino, A, Curtis, GH, Southon, J, Terrasi, F, Campajola, L, Orsi, G. 1994. 14C and 40Ar/39Ar dating of the Campanian Ignimbrite, Phlegrean Fields, Italy. ICOG 8, USGS Circular 1107:77.Google Scholar
de Vivo, B, Rolandi, G, Gans, PB, Calvert, A, Bohrsson, WA, Spera, FJ, Belkin, HE. 2001. New constraints on the pyroclastic eruptive history of the Campanian Volcanic Plain (Italy). Mineralogy and Petrology 73:4765.Google Scholar
Finkel, RC, Nishiizumi, K. 1997. 10Be concentrations in the Greenland Ice Sheet Project ice core from 3–40 ka. Journal of Geophysical Research 102:26,699706.Google Scholar
Frank, M, Schwarz, B, Baumann, S, Kubik, PW, Suter, M, Mangini, A. 1997. A 200-kyr record of cosmogenic radionuclide production rate and geomagnetic field intensity from 10Be in globally stacked deep-sea sediments. Earth and Planetary Science Letters 149:121–9.Google Scholar
Fuhrer, K, Neftel, A, Anklin, M, Maggi, V. 1993. Continuous measurements of hydrogen peroxide, formaldehyde, calcium and ammonium concentrations along the new GRIP ice core from Summit, central Greenland. Atmospheric Environment Part A 27:1873–80.CrossRefGoogle Scholar
Genty, D, Blamart, D, Ouahdi, R, Gilmour, M, Baker, A, Jouzel, J, Van-Exter, S. 2003. Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data. Nature 421:833–7.Google Scholar
Gillot, PY, Labeyrie, L, Laj, C, Valladas, G, Guerin, G, Poupeau, G, Delibrias, G. 1979. Age of the Laschamp pale-omagnetic excursion revisited. Earth and Planetary Science Letters 42:444–50.CrossRefGoogle Scholar
Gow, AJ, Meese, DA, Alley, RB, Fitzpatrick, JJ, Anandakrishnan, S, Woods, GA, Elder, BC. 1997. Physical and structural properties of the Greenland Ice Sheet Project 2 ice core: a review. Journal Geophysical Research 102:26,56975.CrossRefGoogle Scholar
Greenland Summit Ice Cores [CD-ROM]. 1997. Available from the National Snow and Ice Data Center, University of Colorado at Boulder, and the World Data Center-A for Paleoclimatology, National Geophysical Data Center, Boulder, Colorado. Contents available on the Web at http://www.ngdc.noaa.gov/paleo/icecore/greenland/summit/.Google Scholar
Gronvold, K, Oskarsson, N, Johnsen, S, Clausen, HB, Hammer, CU, Bond, G, Bard, E. 1995. Ash layers from Iceland in the Greenland GRIP ice core correlated with ocean and land sediments. Earth and Planetary Science Letters 135:149–55.Google Scholar
Grootes, PM, Stuiver, M. 1997. Oxygen-18/16 variability in Greenland snow and ice with 10-3 to 105-year time resolution. Journal of Geophysical Research 102: 26,45570.Google Scholar
Grootes, PM, Stuiver, M, White, JW, Johnsen, S, Jouzel, J. 1993. Comparison of oxygen isotope results from the GISP2 and GRIP Greenland ice cores. Nature 366: 552–4.Google Scholar
Hammer, CU, Clausen, HB, Tauber, H. 1986. Ice-core dating of the Pleistocene/Holocene boundary applied to the calibration of the 14C time scale. Radiocarbon 28(2A):284–91.Google Scholar
Hammer, CU, Andersen, KK, Clausen, HB, Dahl-Jensen, D, Hvidberg, CS, Iversen, P. 1997. “The Stratigraphic Dating of the GRIP Ice Core,” special report, Geophysics Department, Niels Bohr Institute for Astronomy, Physics, and Geophysics. Copenhagen: University of Copenhagen.Google Scholar
Hughen, KA, Southon, JR, Lehman, S, Overpeck, JT. 2000. Synchronous radiocarbon and climate shifts during the last deglaciation. Science 290:1951–4.CrossRefGoogle ScholarPubMed
Hughen, K, Lehman, S, Southon, J, Overpeck, J, Marchal, O, Herring, C, Turnbull, J. 2004. 14C activity and global carbon cycle changes over the past 50,000 years. Science 303:202–7.Google Scholar
Johnsen, SJ, Clausen, HB, Dansgaard, W, Fuhrer, K, Gundestrup, N, Hammer, CU, Iversen, P, Jouzel, J, Stauffer, B, Steffensen, J P. 1992. Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359: 311–3.Google Scholar
Johnsen, SJ, Clausen, HB, Dansgaard, W, Gundestrup, N, Hammer, CU, Andersen, U, Anderson, KU, Hvidberg, CS, Dahl-Jensen, D, Steffensen, JP, Shoji, H, Sveinbjörnsdóttir, AE, White, J, Jouzel, J, Fisher, D. 1997. The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climate instability. Journal of Geophysical Research 102:26,397410.Google Scholar
Johnsen, SJ, Clausen, HB, Jouzel, J, Schwander, J, Sveinbjörnsdóttir, AE, White, J. 1999. Stable isotope records from Greenland deep ice cores: the climate signal and the role of diffusion. In: Wettlaufer, JS, Dash, J G, Untersterner, N, editors. Ice Physics and the Natural Environment. Berlin: Springer-Verlag. p 89107.Google Scholar
Johnsen, SJ, Dahl-Jensen, D, Gundestrup, N, Steffensen, J, Clausen, H, Miller, H, Masson-Delmotte, V, Sveinbjörnsdóttir, AE, White, J. 2001. Oxygen isotope and paleotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. Journal of Quaternary Science 16:299307.CrossRefGoogle Scholar
Kocharov, GE. 1992. 14C and astrophysical-geophysical phenomena. In: Taylor, RE, Long, A, Kra, RS, editors. Radiocarbon After Four Decades. Berlin: Springer-Verlag. p 130–45.Google Scholar
Kromer, B, Spurk, M. 1998. Revision and tentative extension of the tree-ring based 14C calibration 9200–11,855 cal BP. Radiocarbon 40(3):1117–25.Google Scholar
Lacasse, C, Sigurdsson, H, Carey, S, Paterne, M, Guichard, F. 1996. North Atlantic deep-sea sedimentation of Late Quaternary tephra from the Iceland hotspot. Marine Geology 129:207–35.Google Scholar
Levi, S, Audunsson, H, Duncan, RA, Kristjansson, L, Gillot, P-Y, Jakobsson, SP. 1990. Late Pleistocene geomagnetic excursion in Icelandic lava: confirmation of the Laschamp excursion. Earth and Planetary Science Letters 96:443–57.CrossRefGoogle Scholar
Lowe, JJ, Hoek, WZ, INTIMATE group. 2001. Interregional correlation of paleoclimate records for the last glacial-interglacial transition: a protocol for improved precision recommended by the INTIMATE project group. Quaternary Science Reviews 20:1175–87.Google Scholar
Martinson, DG, Psias, NG, Hays, JD, Imbrie, J, Moore, TCJ, Shackleton, NJ. 1987. Age dating and the orbital theory of ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quaternary Research 27:1129.Google Scholar
Meese, DA, Alley, RB, Gow, AJ, Groote, PM, Mayewski, PA, Ram, M, Taylor, KC, Waddington, IE, Zielinski, GA. 1994. Preliminary depth-age scale of the GISP2 ice core, CRREL Special Report 94-1. Hanover, New Hampshire (USA): Cold Regions Research and Engineering Laboratory.Google Scholar
Meese, D, Gow, AJ, Alley, RB, Zielinski, GA, Grootes, PM, Ram, M, Taylor, KC, Mayewski, PA, Bolzan, JF. 1997. The Greenland Ice Sheet Project 2 depth-age scale: methods and results. Journal of Geophysical Research 102:26,41123.CrossRefGoogle Scholar
Peterson, LC, Haug, GH, Hughen, KA, Rohl, U. 2000. Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial. Science 290:1947–51.CrossRefGoogle ScholarPubMed
Raisbeck, GM, Yiou, F, Fruneau, M, Loiseaux, JM, Lieuvin, M, Ravel, JC. 1981. Cosmogenic 10Be/7Be as a probe of atmospheric transport processes. Geophysical Research Letters 8:1015–8.Google Scholar
Rahmstorf, S. 2003. Timing of abrupt climate change: a precise clock. Geophysical Research Letters 30(10): 1510–3.Google Scholar
Ram, M, Illing, M. 1994. Polar ice stratigraphy from laser-light scattering: scattering from meltwater. Journal of Glaciology 40:504–8.Google Scholar
Ram, M, Illing, M, Weber, P, Koenig, G, Kaplan, M. 1995. Polar ice stratigraphy from laser-light scattering: scattering from ice. Geophysical Research Letters 22: 3525–7.Google Scholar
Ram, M, Donarummo, J, Sheridan, M. 1996. Volcanic ash from Iceland ≃57,300 yr BP eruption found in GISP2 (Greenland) ice core. Geophysical Research Letters 23:3167–9.Google Scholar
Ram, M, Koenig, G. 1997. Continuous dust concentration profile of pre-Holocene ice from the Greenland Ice Sheet Project 2 ice core: dust stadials, interstadials and the Eemian. Journal of Geophysical Research 102: 26,6418.CrossRefGoogle Scholar
Ram, M, Donarummo, J, Stolz, MR, Koenig, G. 2000. Calibration of laser-light scattering measurements of dust concentrations for Wisconsin GISP2 ice using instrumental neutron activation analysis of aluminum: results and discussion. Geophysical Research Letters 105:24,7318.Google Scholar
Robinson, C, Raisbeck, , Yiou, F, Lehman, B, Laj, C. 1995. The relationship between 10Be and geomagnetic field strength records in central North Atlantic sediments during the last 80 ka. Earth and Planetary Science Letters 136:551–7.Google Scholar
Ruddiman, WF, MacIntyre, A. 1984. Ice-age thermal response and climatic role of the surface Atlantic Ocean, 40°N to 63°N. Geological Society of America Bulletin 95:381–96.2.0.CO;2>CrossRefGoogle Scholar
Ruddiman, WF. 2003. Orbital insolation, ice volume, and greenhouse gases. Quaternary Science Reviews 22: 1597–629.Google Scholar
Shackleton, NJ. 2000. The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide and orbital eccentricity. Science 289:1897–902.Google Scholar
Sigurdsson, H, McIntosh, WC, Dunbar, N, Lacasse, C, Carey, SN. 1998. Thorsmork Ignimbrite in Iceland: possible source of the North Atlantic Ash Zone 2. Eos Transactions, AGU, Spring Meeting Supplement 79: S377.Google Scholar
Southon, JR. 2002. A first step to resolving the GISP2 and GRIP ice-core chronologies, 0–14,500 yr BP. Quaternary Research 57:32–7.Google Scholar
Sowers, T, Bender, M, Labeyrie, LD, Jouzel, J, Raynaud, D, Martinson, D, Korotkevich, YS. 1993. 135,000 year Vostok-SPECMAP common temporal framework. Paleoceanography 8:737–66.Google Scholar
Spotl, C, Mangin, A. 2002. Stalagmite from the Austrian Alps reveals Dansgaard-Oeschger events during isotope stage 3: implications for the absolute chronology of Greenland ice cores. Earth and Planetary Science Letters 203:507–18.Google Scholar
Spurk, M, Friedrich, M, Hofmann, J, Remmele, S, Frenzel, B, Leuschner, H, Kromer, B. 1998. Revisions and extensions of the Hohenheim oak and pine chronologies: new evidence about the timing of the Younger Dryas/Preboreal transition. Radiocarbon 40(3):1107–16.Google Scholar
Stuiver, M, Braziunas, TF. 1993. Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and spectral relationships. The Holocene 3:289305.Google Scholar
Stuiver, M, Grootes, PM, Braziunas, TF. 1995. The GISP2 δ18O climate record of the past 16,500 years and the role of the sun, ocean and volcanoes. Quaternary Research 44:341–54.Google Scholar
Stuiver, M, Reimer, PJ, Bard, E, Beck, JW, Burr, GS, Hughen, KA, Kromer, B, McCormac, G, van der Plicht, J, Spurk, M. 1998. IntCal98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40(3):1041–83.Google Scholar
Stuiver, M, Grootes, PM. 2000. GISP2 oxygen isotope ratios. Quaternary Research 53:277–84.CrossRefGoogle Scholar
Taylor, KC, Alley, RA, Lamorey, G, Mayewski, P. 1997. Electrical measurements on the Greenland Ice Sheet Project 2 Core. Journal of Geophysical Research 102: 26,5117.Google Scholar
Ton-That, T, Singer, B, Paterne, M. 2001. 40Ar/39Ar dating of the latest Pleistocene (41 ka) marine tephra in the Mediterranean Sea: implications for global climate records. Earth and Planetary Science Letters 184: 645–58.CrossRefGoogle Scholar
van Krefeld, S, Sarnthein, M, Erlenkreuser, H, Jung, S, Nadeau, MJ, Pflaumann, U, Voelker, A. 2000. Potential links between surging ice sheets, circulation changes and the Dansgaard-Oeschger cycles in the Irminger Sea, 18–60 kyr. Paleoceanography 15:425–42.Google Scholar
Voelker, AHL, Sarnthein, M, Grootes, PM, Erlenkreuser, H, Laj, C, Mazaud, M, Nadeau, MJ, Sleicher, M. 1998. Correlation of marine 14C ages from the Nordic seas with the GISP2 isotope record: implications for 14C calibration beyond 25 ka BP. Radiocarbon 40(1):517–34.Google Scholar
von Grafenstein, U, Erlenkreuser, H, Brauer, A, Jouzel, J, Johnsen, S. 1999. A mid-European decadal isotope-climate record from 15,500 to 5000 years BP. Science 284:1654–7.Google Scholar
Wang, YJ, Cheng, H, Edwards, RL, An, ZS, Wu, C-C, Dorale, JA. 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 292:2345–8.Google Scholar
Yiou, F, Raisbeck, GM, Baumgartner, S, Beer, J, Hammer, C, Johnsen, S, Jouzel, J, Kubik, PW, Lestringuez, J, Stievenard, M, Suter, M, Yiou, P. 1997. 10Be in the Greenland Ice Core Project ice core at Summit, Greenland. Journal of Geophysical Research 102:26,78394.Google Scholar
Zielinski, GA, Mayewski, PA, Meeker, LD, Whitlow, S, Twickler, MS. 1996. A 110,000-yr record of explosive volcanism from the GISP2 (Greenland) ice core. Quaternary Research 45:109–18.Google Scholar