Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T01:37:53.670Z Has data issue: false hasContentIssue false

Extension of the 14C Calibration Curve to ca. 40,000 Cal BC by Synchronizing Greenland 180/16O Ice Core Records and North Atlantic Foraminifera Profiles: A Comparison with U/Th Coral Data

Published online by Cambridge University Press:  18 July 2016

Olaf Jöris
Affiliation:
Institut für Ur- und Frühgeschichte, 14C-Labor, Universität zu Köln, Weyertal 125 D-50923 Köln, Germany
Bernhard Weninger
Affiliation:
Institut für Ur- und Frühgeschichte, 14C-Labor, Universität zu Köln, Weyertal 125 D-50923 Köln, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a better understanding of pre-Holocene cultural history, archaeologists are in need of an absolute time scale that can be confirmed and duplicated by different dating methods. Proxy data available from archaeological sites do not, in themselves, allow much reflection on absolute age. Even when founded on supporting radiocarbon data, Paleolithic chronologies that are beyond the actual limits of 14C calibration still remain relative ones, and thus are often quite tentative. Lacking the possibility of calibration for the Paleolithic, archaeologists often attempt to correlate their data with different time scales from different archives that are thought to be absolute or calendric. The main result of this paper is that the GISP2 and U/Th chronologies duplicate each other over their entire range of data overlap, while other time scales (i.e., GRIP, most varve sites) differ significantly. The context-derived 14C calibration curve provides a large potential to correlate the various climate archives as recorded in ice cores and deep ocean drillings with terrestrial sequences.

Type
Part 1: Methods
Copyright
Copyright © The American Journal of Science 

References

Bard, E., Arnold, M., Fairbanks, R. G. and Hamelin, B. 1993 230Th-234U and 14C ages obtained by mass spectrometry on corals. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 191199.CrossRefGoogle Scholar
Becker, B., Kromer, B. and Trimborn, P. 1991 A stable-isotope tree-ring timescale of the Late Glacial/Holocene boundary. Nature 353: 647649.Google Scholar
Behl, R. J. and Kennett, J. P. 1996 Brief interstadial events in the Santa Barbara Basin, NE Pacific, during the past 60 kyr. Nature 379: 243246.Google Scholar
Behre, K.-E. and van der Plicht, J. 1992 Towards an absolute chronology for the Last Glacial period in Europe. Radiocarbon dates from Oerel, Northern Germany. Vegetation History and Archaeobotany 1:111–117.Google Scholar
Bender, M., Sowers, T. Dickson, M.-L., Orchado, J., Grootes, P., Mayewski, P. A. and Meese, D. A. 1994 Climate correlations between Greenland and Antarctica during the past 100,000 yrs. Nature 372: 663666.Google Scholar
Bond, G., Heinrich, W., Broecker, W., Labeyrie, L., McManus, J., Andrews, J., Huon, S., Jantschik, R., Clasen, S., Simet, C., Tedesco, K., Klas, M., Bonani, G. and Ivy, S. 1992 Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature 360: 245249.Google Scholar
Bond, G., Broecker, W. S., Johnsen, S. J., McManus, J., Labeyrie, L., Jouzel, J. and Bonani, G. 1993 Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365: 143147.Google Scholar
Bond, G. C. and Lotti, R. 1995 Iceberg discharges into the North Atlantic on millennial time scales during the Last Glaciation. Science 267: 10051010.Google Scholar
Broecker, W. S. 1992 Defining the boundaries of the Late-Glacial isotope episodes. Quaternary Research 38: 135138.CrossRefGoogle Scholar
Broecker, W. S., Bond, G. and Klas, M. 1990 A salt oscillator in the glacial Atlantic? 1. The concept. Paleoceanography 5(4): 469477.Google Scholar
Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjörnsdóttir, A. E., Jouzel, J. and Bond, G. 1993 Evidence for general instability in past climate from a 250-kyr ice-core record. Nature 364: 218220.Google Scholar
Edwards, R. L., Beck, J. W., Burr, G. S., Donahue, D. J., Chappell, J. M. A., Bloom, A. L., Druffel, E. R. M. and Taylor, F. W. 1993 A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science 260: 962968.Google Scholar
Fronval, T., Jansen, E., Bloemendal, J. and Johnsen, S. 1995 Oceanic vidence for coherent fluctuations in Fennoscandian and Laurentide ice sheets on millennium timescales. Nature 374: 443446.Google Scholar
Goslar, T., Arnold, M. and Pazdur, M. F. 1995 The Younger Dryas cold event: Was it synchronous over the North Atlantic region? Radiocarbon 37(1): 6370.Google Scholar
Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. and Jouzel, J. 1993 Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice core. Nature 366: 552554.Google Scholar
Guiot, J., Pons, A., de Beaulieu, J. L. and Reille, M. 1989 A 140,000-year continental climate reconstruction from two European pollen records. Nature 338: 309313.CrossRefGoogle Scholar
Hajdas, I., Ivy-Ochs, S. D. and Bonani, G. 1995 Problems in the extension of the radiocarbon calibration curve (10–13 kyr BP). Radiocarbon 37(1): 7579.Google Scholar
Johnsen, S. J., Clausen, H. B., Dansgaard, W., Fuhrer, K., Gundestrup, N., Hammer, C. U., Iversen, P., Jouzel, J., Stauffer, B. and Steffensen, J. P. 1992 Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359: 311313.Google Scholar
Keigwin, L. D., Curry, W. B., Lehmann, S. J. and Johnsen, S. 1994 The role of the deep ocean in North Atlantic climate change between 70 and 130 kyr ago. Nature 371: 323326.Google Scholar
Kitagawa, H. and van der Plicht, J. 1997 A 40,000-year varve chronology from Lake Suigetsu, Japan: Extension of the 14C Calibration Curve. Radiocarbon, this issue.Google Scholar
Kromer, B. and Becker, B. 1993 German oak and pine 14C calibration, 7200–9439 BC. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 125135.CrossRefGoogle Scholar
Kukla, G., Berger, A., Lotti, R. and Brown, J. 1981 Orbital signature of interglacials. Nature 290: 295300.Google Scholar
Lehman, S. J. and Keigwin, G. 1992 Sudden changes in North Atlantic circulation during the last deglaciation. Nature 365: 757762.Google Scholar
Lotter, A. F., Eicher, U., Birks, H. J. B. and Siegenthaler, U. 1992 Late-glacial climatic oscillations as recorded in Swiss lake sediments. Journal of Quaternary Science 7(3): 187204.Google Scholar
Lowe, J. J., Coope, G. R., Harkness, D. D., Sheldrick, C. and Walker, M. J. C. 1995 Direct comparison of UK temperatures and Greenland snow accumulation rates, 15,000–12,000 yr ago. Journal of Quaternary Science 10(2): 175180.Google Scholar
Mangerud, J., Sonstegaard, E. and Sejrup, H.-P. 1979 Correlation of the Eemian (interglacial) stage and the deep-sea oxygen-isotope stratigraphy. Nature 277: 189192.Google Scholar
Martinson, D. G., Pisias, N. G., Hays, J. D., Imbrie, J., Moore, T. C. Jr. and Shackleton, N. S. 1987 Age dating and the orbital theory of the Ice Ages: Development of a high-resolution 0 to 300,000-year chronostratigraphy. Quaternary Research 27: 129.Google Scholar
Meese, D., Alley, R., Gow, T., Grootes, P. M., Mayewski, P., Ram, M., Taylor, K., Waddington, E. and Zielinski, G. 1994 Preliminary depth-age scale of the GISP2 ice core. CRREL Special Report 94–1.Google Scholar
Pearson, G. W. 1986 Precise calendrical dating of known growth-period samples using a “curve fitting” technique. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 292–299.Google Scholar
Sowers, T. and Bender, M. 1995 Climate records covering the last deglaciation. Science 269: 210214.Google Scholar
Sowers, T., Bender, M., Labeyrie, L., Martinson, D., Jouzel, J., Raynaud, D., Pichon, J. J. and Korotkevich, Y. 1993 135,000 year Vostok-SPECMAP common temporal framework. Paleoceanography 8: 737766.Google Scholar
Spurk, M., Friedrich, M., Hofmann, J., Remmele, S., Leuschner, H. H., Frenzel, B. and Kromer, B. 1998 Revision and extension of the German oak and pine chronologies: New evidence for the timing of the Younger Dryas/Preboreal transition. In Stuiver, M., ed., Calibration issue. Radiocarbon, in press.Google Scholar
Street, M., Baales, M. and Weninger, B. 1994 Absolute Chronologie des Späten Paläolithikums und des Frühmesolithikums im nördlichen Rheinland. Archäologisches Korrespondenzblatt 24: 128.Google Scholar
Stuiver, M. and Braziunas, T. F. 1993 Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 137189.CrossRefGoogle Scholar
Stuiver, M. and Reimer, P. J. 1993 Extended 14C data base and revised CALIB 3.0 14C age calibration program. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 215230.Google Scholar
Stuiver, M., Grootes, P. M. and Braziunas, T. F. 1995 The GISP2 delta 18O climate record of the past 16,500 years and the role of the sun, ocean, and volcanoes. Quaternary Research 44: 341354.Google Scholar
Taylor, K. C., Lamorey, G. W., Doyle, G. A., Alley, R. B., Grootes, P. M., Mayewski, P. A., White, J. W. C. and Barlow, L. K. 1993a The “flickering switch” of Late Pleistocene climate change. Nature 361: 432436.Google Scholar
Taylor, K. C., Hammer, C. U., Alley, R. B., Clausen, H. B., Dahl-Jensen, D., Gow, A. J., Gundestrup, N. S., Kipfstuhl, J., Moore, J. C. and Waddington, E. D. 1993b Electrical conductivity measurements from the GISP2 and GRIP Greenland ice cores. Nature 366: 549552.Google Scholar
van Roijen, J., van der Borg, K. and de Jong, A. 1995 A correction for in-situ 14C in Antarctic ice with 14CO. In Cook, G. T., Harkness, D. D., Miller, B. F. and Scott, E. M., eds., Proceedings of the 15th International 14C Conference. Radiocarbon 37(2): 165169.Google Scholar
Voelker, A., Sarnthein, H., Grootes, P., Erlenkeuser, H., Laj, C., Mazaud, A., Nadeau, M.-J., and Schleicher, M. 1998 Correlation of marine 14C ages from the Nordic Seas with the GISP2 isotope record: Implications for 14C calibration beyond 25 ka BP. Radiocarbon, this issue.Google Scholar
Weninger, B. 1986 High-precision calibration of archaeological radiocarbon dates. Acta Interdisciplinaria Archaeologica 4: 1153.Google Scholar
Weninger, B. 1995 Stratified 14C dates and ceramic chronologies: Case studies for the Early Bronze Age at Troy (Turkey) and Ezero (Bulgaria). In Cook, G. T., Harkness, D. D., Miller, B. F. and Scott, E. M., eds., Proceedings of the 15th International 14C Conference. Radiocarbon 37(2): 443456.CrossRefGoogle Scholar
Wilson, A. T. 1995 Application of AMS 14C dating to ice core research. In Cook, G. T., Harkness, D. D., Miller, B. F. and Scott, E. M., eds., Proceedings of the 15th International 14C Conference. Radiocarbon 37(2): 637641.Google Scholar
Woillard, G. M. and Mook, W. G. 1982 Carbon-14 dates at Grande Pile: Correlation of land and sea chronologies. Nature 215: 159161.Google Scholar