Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-24T18:08:09.362Z Has data issue: false hasContentIssue false

Alterations in resting-state functional activity and connectivity for major depressive disorder appetite and weight disturbance phenotypes

Published online by Cambridge University Press:  07 June 2022

Mayron Piccolo
Affiliation:
McLean Hospital, Belmont, MA 02478, USA Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
Emily L. Belleau
Affiliation:
McLean Hospital, Belmont, MA 02478, USA Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
Laura M. Holsen
Affiliation:
Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA Department of Psychiatry, Brigham and Women's Hospital, Boston, MA 02115, USA
Madhukar H. Trivedi
Affiliation:
Division of Mood Disorders, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA
Ramin V. Parsey
Affiliation:
Neuroscience Institute, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11733, USA
Patrick J. McGrath
Affiliation:
New York State Psychiatric Institute & Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
Myrna M. Weissman
Affiliation:
New York State Psychiatric Institute & Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
Diego A. Pizzagalli
Affiliation:
McLean Hospital, Belmont, MA 02478, USA Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
Kristin N. Javaras*
Affiliation:
McLean Hospital, Belmont, MA 02478, USA Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
*
Author for correspondence: Kristin N. Javaras, E-mail: kjavaras@mclean.harvard.edu

Abstract

Background

Major depressive disorder (MDD) is often accompanied by changes in appetite and weight. Prior task-based functional magnetic resonance imaging (fMRI) findings suggest these MDD phenotypes are associated with altered reward and interoceptive processing.

Methods

Using resting-state fMRI data, we compared the fractional amplitude of low-frequency fluctuations (fALFF) and seed-based connectivity (SBC) among hyperphagic (n = 77), hypophagic (n = 66), and euphagic (n = 42) MDD groups and a healthy comparison group (n = 38). We examined fALFF and SBC in a mask restricted to reward [nucleus accumbens (NAcc), putamen, caudate, ventral pallidum, and orbitofrontal cortex (OFC)] and interoceptive (anterior insula and hypothalamus) regions and also performed exploratory whole-brain analyses. SBC analyses included as seeds the NAcc and also regions demonstrating group differences in fALFF (i.e. right lateral OFC and right anterior insula). All analyses used threshold-free cluster enhancement.

Results

Mask-restricted analyses revealed stronger fALFF in the right lateral OFC, and weaker fALFF in the right anterior insula, for hyperphagic MDD v. healthy comparison. We also found weaker SBC between the right lateral OFC and left anterior insula for hyperphagic MDD v. healthy comparison. Whole-brain analyses revealed weaker fALFF in the right anterior insula, and stronger SBC between the right lateral OFC and left precentral gyrus, for hyperphagic MDD v. healthy comparison. Findings were no longer significant after controlling for body mass index, which was higher for hyperphagic MDD.

Conclusions

Our results suggest hyperphagic MDD may be associated with altered activity in and connectivity between interoceptive and reward regions.

Type
Original Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Zubaidi, A., Heldmann, M., Mertins, A., Jauch-Chara, K., & Munte, T. F. (2018). Influences of hunger, satiety and oral glucose on functional brain connectivity: A multimethod resting-state fMRI study. Neuroscience, 382, 8092. doi: 10.1016/j.neuroscience.2018.04.029CrossRefGoogle ScholarPubMed
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: American Psychiatric Association.Google Scholar
Barrett, L. F., & Simmons, W. K. (2015). Interoceptive predictions in the brain. Nature Reviews Neuroscience, 16(7), 419429. doi: 10.1038/nrn3950CrossRefGoogle ScholarPubMed
Cerit, H., Christensen, K., Moondra, P., Klibanski, A., Goldstein, J. M., & Holsen, L. M. (2019). Divergent associations between ghrelin and neural responsivity to palatable food in hyperphagic and hypophagic depression. Journal of Affective Disorders, 242, 2938. doi: 10.1016/j.jad.2018.07.088CrossRefGoogle ScholarPubMed
Cheng, W., Rolls, E. T., Qiu, J., Liu, W., Tang, Y., Huang, C. C., … Feng, J. (2016). Medial reward and lateral non-reward orbitofrontal cortex circuits change in opposite directions in depression. Brain, 139(Pt 12), 32963309. doi: 10.1093/brain/aww255CrossRefGoogle ScholarPubMed
Craig, A. D. (2009). How do you feel--now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10(1), 5970. doi: 10.1038/nrn2555CrossRefGoogle Scholar
Demos, K. E., Heatherton, T. F., & Kelley, W. M. (2012). Individual differences in nucleus accumbens activity to food and sexual images predict weight gain and sexual behavior. The Journal of Neuroscience, 32(16), 55495552. doi: 10.1523/JNEUROSCI.5958-11.2012CrossRefGoogle ScholarPubMed
Diemer, E. W., Hudson, J. I., & Javaras, K. N. (2021). More (adjustment) is not always better: How directed acyclic graphs can help researchers decide which covariates to include in models for the causal relationship between an exposure and an outcome in observational research. Psychotherapy and Psychosomatics, 90(5), 289298. doi: 10.1159/000517104.CrossRefGoogle ScholarPubMed
Domingo-Rodriguez, L., Ruiz de Azua, I., Dominguez, E., Senabre, E., Serra, I., Kummer, S., … Maldonado, R. (2020). A specific prelimbic-nucleus accumbens pathway controls resilience versus vulnerability to food addiction. Nature Communications, 11(1), 782. doi: 10.1038/s41467-020-14458-yCrossRefGoogle Scholar
Egorova, N., Veldsman, M., Cumming, T., & Brodtmann, A. (2017). Fractional amplitude of low-frequency fluctuations (fALFF) in post-stroke depression. Neuroimage: Clinical, 16, 116124. doi: 10.1016/j.nicl.2017.07.014CrossRefGoogle ScholarPubMed
Furman, D. J., Hamilton, J. P., & Gotlib, I. H. (2011). Frontostriatal functional connectivity in major depressive disorder. Biology of Mood & Anxiety Disorders, 1(1), 11. doi: 10.1186/2045-5380-1-11CrossRefGoogle ScholarPubMed
Hallquist, M. N., Hwang, K., & Luna, B. (2013). The nuisance of nuisance regression: Spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. NeuroImage, 82, 208225. doi: 10.1016/j.neuroimage.2013.05.116CrossRefGoogle Scholar
Haynos, A. F., Hall, L. M. J., Lavender, J. M., Peterson, C. B., Crow, S. J., Klimes-Dougan, B., … Camchong, J. (2019). Resting-state functional connectivity of networks associated with reward and habit in anorexia nervosa. Human Brain Mapping, 40(2), 652662. doi: 10.1002/hbm.24402CrossRefGoogle ScholarPubMed
Husain, M. M., Rush, A. J., Sackeim, H. A., Wisniewski, S. R., McClintock, S. M., Craven, N., … Hauger, R. (2005). Age-related characteristics of depression: A preliminary STAR*D report. The American Journal of Geriatric Psychiatry, 13(10), 852860. doi: 10.1176/appi.ajgp.13.10.852CrossRefGoogle ScholarPubMed
Kübler, U. (2013). Structured clinical interview for DSM-IV (SCID). In Gellman, M. D. & Turner, J. R. (Eds.), Encyclopedia of behavioral medicine (pp. 19191920). New York, NY: Springer New York.10.1007/978-1-4419-1005-9_66CrossRefGoogle Scholar
Lamers, F., Rhebergen, D., Merikangas, K. R., de Jonge, P., Beekman, A. T., & Penninx, B. W. (2012). Stability and transitions of depressive subtypes over a 2-year follow-up. Psychological Medicine, 42(10), 20832093. doi: 10.1017/S0033291712000141CrossRefGoogle ScholarPubMed
Lawrence, N. S., Hinton, E. C., Parkinson, J. A., & Lawrence, A. D. (2012). Nucleus accumbens response to food cues predicts subsequent snack consumption in women and increased body mass index in those with reduced self-control. NeuroImage, 63(1), 415422. doi: 10.1016/j.neuroimage.2012.06.070CrossRefGoogle ScholarPubMed
Li, W., Chen, Z., Wu, M., Zhu, H., Gu, L., Zhao, Y., … Gong, Q. (2017). Characterization of brain blood flow and the amplitude of low-frequency fluctuations in major depressive disorder: A multimodal meta-analysis. Journal of Affective Disorders, 210, 303311. doi: 10.1016/j.jad.2016.12.032CrossRefGoogle ScholarPubMed
Londerée, A. M., & Wagner, D. D. (2020). The orbitofrontal cortex spontaneously encodes food health and contains more distinct representations for foods highest in tastiness. Social Cognitive and Affective Neuroscience, 16(8), 816826. doi: 10.1093/scan/nsaa083.CrossRefGoogle Scholar
Mulders, P. C., van Eijndhoven, P. F., Schene, A. H., Beckmann, C. F., & Tendolkar, I. (2015). Resting-state functional connectivity in major depressive disorder: A review. Neuroscience and Biobehavioral Reviews, 56, 330344. doi: 10.1016/j.neubiorev.2015.07.014CrossRefGoogle ScholarPubMed
Nierenberg, A. A., Pava, J. A., Clancy, K., Rosenbaum, J. F., & Fava, M. (1996). Are neurovegetative symptoms stable in relapsing or recurrent atypical depressive episodes? Biological Psychiatry, 40(8), 691696. doi: 10.1016/0006-3223(96)00029-7CrossRefGoogle ScholarPubMed
Noble, S., Scheinost, D., & Constable, R. T. (2019). A decade of test-retest reliability of functional connectivity: A systematic review and meta-analysis. NeuroImage, 203, 116157. doi: 10.1016/j.neuroimage.2019.116157CrossRefGoogle ScholarPubMed
Parsons, N., Steward, T., Clohesy, R., Almgren, H., & Duehlmeyer, L. (2021). A systematic review of resting-state functional connectivity in obesity: Refining current neurobiological frameworks and methodological considerations moving forward. Reviews in Endocrine & Metabolic Disorders. doi: 10.1007/s11154-021-09665-xGoogle ScholarPubMed
Piccolo, M., Belleau, E., Holsen, L. M., Pizzagalli, D., & Javaras, K. (2021). Alterations in resting-state functional activity and connectivity for major depressive disorder eating phenotypes. Biological Psychiatry, 89(9), S353. doi: 10.1016/j.biopsych.2021.02.879CrossRefGoogle Scholar
Rolls, E. T. (2021). The orbitofrontal cortex, food reward, body weight, and obesity. Social Cognitive and Affective Neuroscience, 19. doi: 10.1093/scan/nsab044.Google Scholar
Rolls, E. T., Cheng, W., & Feng, J. (2020). The orbitofrontal cortex: Reward, emotion and depression. Brain Communications, 2(2), fcaa196. doi: 10.1093/braincomms/fcaa196CrossRefGoogle ScholarPubMed
Rolls, E. T., Kringelbach, M. L., & de Araujo, I. E. (2003). Different representations of pleasant and unpleasant odours in the human brain. European Journal of Neuroscience, 18(3), 695703. doi: 10.1046/j.1460-9568.2003.02779.xCrossRefGoogle ScholarPubMed
Rudebeck, P. H., & Murray, E. A. (2014). The orbitofrontal oracle: Cortical mechanisms for the prediction and evaluation of specific behavioral outcomes. Neuron, 84(6), 11431156. doi: 10.1016/j.neuron.2014.10.049CrossRefGoogle ScholarPubMed
Rush, A. J., Trivedi, M. H., Ibrahim, H. M., Carmody, T. J., Arnow, B., Klein, D. N., … Keller, M. B. (2003). The 16-item quick inventory of depressive symptomatology (QIDS), clinician rating (QIDS-C), and self-report (QIDS-SR): A psychometric evaluation in patients with chronic major depression. Biological Psychiatry, 54(5), 573583. doi: 10.1016/s0006-3223(02)01866-8CrossRefGoogle ScholarPubMed
Simmons, W. K., Burrows, K., Avery, J. A., Kerr, K. L., Bodurka, J., Savage, C. R., & Drevets, W. C. (2016). Depression-related increases and decreases in appetite: Dissociable patterns of aberrant activity in reward and interoceptive neurocircuitry. American Journal of Psychiatry, 173(4), 418428. doi: 10.1176/appi.ajp.2015.15020162CrossRefGoogle ScholarPubMed
Simmons, W. K., Burrows, K., Avery, J. A., Kerr, K. L., Taylor, A., Bodurka, J., … Drevets, W. C. (2020). Appetite changes reveal depression subgroups with distinct endocrine, metabolic, and immune states. Molecular Psychiatry, 25(7), 14571468. doi: 10.1038/s41380-018-0093-6CrossRefGoogle ScholarPubMed
Simmons, W. K., Rapuano, K. M., Ingeholm, J. E., Avery, J., Kallman, S., Hall, K. D., & Martin, A. (2014). The ventral pallidum and orbitofrontal cortex support food pleasantness inferences. Brain Structure and Function, 219(2), 473483. doi: 10.1007/s00429-013-0511-0CrossRefGoogle ScholarPubMed
Sliz, D., & Hayley, S. (2012). Major depressive disorder and alterations in insular cortical activity: A review of current functional magnetic imaging research. Frontiers in Human Neuroscience, 6, 323. doi: 10.3389/fnhum.2012.00323CrossRefGoogle ScholarPubMed
Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage, 44(1), 8398. doi: 10.1016/j.neuroimage.2008.03.061CrossRefGoogle ScholarPubMed
Snaith, R. P., Hamilton, M., Morley, S., Humayan, A., Hargreaves, D., & Trigwell, P. (1995). A scale for the assessment of hedonic tone the Snaith-Hamilton Pleasure Scale. The British Journal of Psychiatry, 167(1), 99103. doi: 10.1192/bjp.167.1.99CrossRefGoogle ScholarPubMed
Thorpe, S. J., Rolls, E. T., & Maddison, S. (1983). The orbitofrontal cortex: Neuronal activity in the behaving monkey. Experimental Brain Research, 49(1), 93115. doi: 10.1007/BF00235545CrossRefGoogle ScholarPubMed
Trivedi, M. H., McGrath, P. J., Fava, M., Parsey, R. V., Kurian, B. T., Phillips, M. L., … Weissman, M. M. (2016). Establishing moderators and biosignatures of antidepressant response in clinical care (EMBARC): Rationale and design. Journal of Psychiatric Research, 78, 1123. doi: 10.1016/j.jpsychires.2016.03.001CrossRefGoogle ScholarPubMed
Watson, D., Weber, K., Assenheimer, J. S., Clark, L. A., Strauss, M. E., & McCormick, R. A. (1995). Testing a tripartite model: I. Evaluating the convergent and discriminant validity of anxiety and depression symptom scales. Journal of Abnormal Psychology, 104(1), 314. doi: 10.1037//0021-843x.104.1.3CrossRefGoogle ScholarPubMed
Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity, 2(3), 125141. doi: 10.1089/brain.2012.0073CrossRefGoogle Scholar
Yin, Z., Chang, M., Wei, S., Jiang, X., Zhou, Y., Cui, L., … Tang, Y. (2018). Decreased functional connectivity in insular subregions in depressive episodes of bipolar disorder and major depressive disorder. Frontiers in Neuroscience, 12, 842. doi: 10.3389/fnins.2018.00842CrossRefGoogle ScholarPubMed
Zhong, X., Pu, W., & Yao, S. (2016). Functional alterations of fronto-limbic circuit and default mode network systems in first-episode, drug-naive patients with major depressive disorder: A meta-analysis of resting-state fMRI data. Journal of Affective Disorders, 206, 280286. doi: 10.1016/j.jad.2016.09.005CrossRefGoogle ScholarPubMed
Zhou, M., Hu, X., Lu, L., Zhang, L., Chen, L., Gong, Q., & Huang, X. (2017). Intrinsic cerebral activity at resting state in adults with major depressive disorder: A meta-analysis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 75, 157164. doi: 10.1016/j.pnpbp.2017.02.001CrossRefGoogle Scholar
Zou, Q. H., Zhu, C. Z., Yang, Y., Zuo, X. N., Long, X. Y., Cao, Q. J., … Zang, Y. F. (2008). An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. Journal of Neuroscience Methods, 172(1), 137141. doi: 10.1016/j.jneumeth.2008.04.012CrossRefGoogle Scholar
Zuo, X. N., & Xing, X. X. (2014). Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: A systems neuroscience perspective. Neuroscience and Biobehavioral Reviews, 45, 100118. doi: 10.1016/j.neubiorev.2014.05.009CrossRefGoogle ScholarPubMed
Supplementary material: File

Piccolo et al. supplementary material

Piccolo et al. supplementary material

Download Piccolo et al. supplementary material(File)
File 65.1 KB