Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-06T23:06:49.342Z Has data issue: false hasContentIssue false

Age, intensity of infestation by flea parasites and body mass loss in a rodent host

Published online by Cambridge University Press:  08 May 2006

H. HAWLENA
Affiliation:
Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel Ramon Science Center and Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84490 Midreshet Ben-Gurion, Israel
I. S. KHOKHLOVA
Affiliation:
Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
Z. ABRAMSKY
Affiliation:
Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
B. R. KRASNOV
Affiliation:
Ramon Science Center and Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84490 Midreshet Ben-Gurion, Israel

Abstract

Parasitism by the flea Synosternus cleopatrae does not affect the body mass of its principal rodent host, Gerbillus andersoni under natural infestation levels. We hypothesized that the lack of negative effects of flea parasitism on rodent body mass could be related either to the low level of natural infestation or to the differential susceptibility of rodent age cohorts to flea parasitism. We tested these hypotheses by measuring body mass change under flea parasitism in (a) adult rodents infested with fleas above the natural infestation level (the first hypothesis) and (b) juvenile rodents infested with fleas at natural infestation levels (the second hypothesis). Adult individuals parasitized by a number of fleas higher than in nature lost body mass at higher rates than non-parasitized control individuals. Parasitism significantly affected daily body mass change of juvenile gerbils. Juvenile rodents parasitized by fleas at the natural level of infestation lost body mass faster and gained body mass slower than control animals. We suggest that some regulating mechanisms may limit natural flea densities at a point at which the negative effect on hosts is below the accuracy of our measurements. However, natural flea densities are sufficiently high to harm the more susceptible, juvenile cohort.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramsky, Z. ( 1984). Population biology of Gerbillus allenbyi in Northern Israel. Mammalia 48, 197206.CrossRefGoogle Scholar
Arneberg, P., Skorping, A., Grenfell, B. and Read, A. F. ( 1998). Host densities as determinants of abundance in parasite communities. Proceedings of the Royal Society of London, B 265, 12831289.CrossRefGoogle Scholar
Bennett, G. F., Caines, J. R. and Bishop, M. A. ( 1988). Influence of blood parasites on the body-mass of passeriform birds. Journal of Wildlife Diseases 24, 339343.CrossRefGoogle Scholar
Bloomer, S. E. M., Willebrand, T., Keith, I. M. and Keith, L. B. ( 1995). Impact of helminth parasitism on a snowshoe hare population in central Wisconsin: a field experiment. Canadian Journal of Zoology 73, 18911898.CrossRefGoogle Scholar
Brown, C. R. and Brown, M. B. ( 1986). Ectoparasitism as a cost of coloniality in cliff swallows (Hirundo pyrrhonota). Ecology 67, 12061218.CrossRefGoogle Scholar
Christian, K. A. and Bedford, G. S. ( 1995). Physiological consequences of filarial parasites in the frillneck lizard, Chlamydosaurus kingii, in Northern Australia. Canadian Journal of Zoology 73, 23022306.CrossRefGoogle Scholar
Degen, A. A. ( 1997). Ecophysiology of Small Desert Mammals, Springer-Verlag, Berlin.
Degen, A. A. and Kam, M. ( 1991). Average daily metabolic-rate of gerbils of 2 species – Gerbillus pyramidum and Gerbillus allenbyi. Journal of Zoology 223, 143149.Google Scholar
Dufva, R. ( 1996). Sympatric and allopatric combinations of hen fleas and great tits: a test of the local adaptation hypothesis. Journal of Evolutionary Biology 9, 505510.CrossRefGoogle Scholar
French, N. R., Grant, W. E., Grodzinski, W. and Swift, D. M. ( 1976). Small mammal energetics in grassland ecosystems. Ecological Monographs 46, 201220.CrossRefGoogle Scholar
Gregory, R. D., Montgomery, S. S. J. and Montgomery, W. I. ( 1992). Population biology of Heligmosomoides-polygyrus (Nematoda) in the Wood Mouse. Journal of Animal Ecology 61, 749757.CrossRefGoogle Scholar
Grodzinski, W. and Wunder, B. A. ( 1975). Ecological energetics of small mammals. In Small Mammals: Their Productivity and Population Dynamics ( ed. Golly, F. B., Petrusewitz, K. and Ryszkowski, L.), pp. 173204. Cambridge University Press, Cambridge.
Gulland, F. M. D. ( 1995). The impact of infectious diseases on wild animal populations- a review. In Ecology of Infectious Diseases in Natural Populations, Vol. 1 ( ed. Grenfell, B. T. and Dobson, A. P.), pp. 2051. Cambridge University Press, Cambridge.CrossRef
Gwinner, H. and Berger, S. ( 2005). European starlings: nestling condition, parasites and green nest material during the breeding season. Journal of Ornithology 146, 365371.CrossRefGoogle Scholar
Harrison, D. L. and Bates, P. J. J. ( 1991). The Mammals of Arabia, 2nd Edn. Harrison Zoological Museum, Sevenoaks.
Hawlena, H., Abramsky, Z. and Krasnov, B. R. ( 2006). Ectoparasites and age-dependent survival in a desert rodent. Oecologia (in the Press).CrossRefGoogle Scholar
Henry, P. Y., Poulin, B., Rousset, F., Renaud, F. and Thomas, F. ( 2004). Infestation by the mite Harpirhynchus nidulans in the bearded tit Panurus biarmicus. Bird Study 51, 3440.CrossRefGoogle Scholar
Holmstad, P. R., Hudson, P. J. and Skorping, A. ( 2005). The influence of a parasite community on the dynamics of a host population: a longitudinal study on willow ptarmigan and their parasites. Oikos 111, 377391.CrossRefGoogle Scholar
Khokhlova, I. S., Degen, A. A. and Kam, M. ( 1995). Body-size, gender, seed husking and energy-requirements in 2 species of desert gerbilline rodents, Meriones-crassus and Gerbillus-henleyi. Functional Ecology 9, 720724.CrossRefGoogle Scholar
Kleiber, M. ( 1961). The Fire of Life: an Introduction to Animal Energetics, Wiley, New York.
Krasnov, B. R., Shenbrot, G. I., Medvedev, S. G., Vatschenok, V. S. and Khokhlova, I. S. ( 1997). Host-habitat relations as an important determinant of spatial distribution of flea assemblages (Siphonaptera) on rodents in the Negev desert. Parasitology 114, 159173.CrossRefGoogle Scholar
Lehmann, T. ( 1992). Ectoparasite impacts on Gerbillus andersoni allenbyi under natural conditions. Parasitology 104, 479488.CrossRefGoogle Scholar
Lehmann, T. ( 1993). Ectoparasites – direct impact on host fitness. Parasitology Today 9, 813.CrossRefGoogle Scholar
Marshall, A. G. ( 1981). The Ecology of Ectoparasite Insects. Academic Press, London.
Martin, T. E., Moller, A. P., Merino, S. and Clobert, J. ( 2001). Does clutch size evolve in response to parasites and immunocompetence? Proceedings of the National Academy of Sciences, USA 98, 20712076.Google Scholar
Mead-Briggs, A. R., Vaughan, J. A. and Rennison, B. D. ( 1975). Seasonal variation in numbers of the rabbit flea on the wild rabbit. Parasitology 70, 103118.CrossRefGoogle Scholar
Moller, A. P. ( 1991). Ectoparasite loads affect optimal clutch size in swallows. Functional Ecology 5, 351359.CrossRefGoogle Scholar
Moller, A. P. ( 1997). Parasitism and the evolution of host life history. In Host-Parasite Evolution. General Principles and Avian Models, Vol. 6 ( ed. Clayton, D. H. and Moore, J.), pp. 105127. Oxford University Press, New York.
Moller, A. P., Allander, K. and Dufva, R. ( 1990). Fitness effects of parasites on passerine birds: a review. In Population Biology of Passerine Birds: an Integrated Approach ( ed. Blondel, J., Gosler, A., Lebreton, J. D. and McCleery, R. H.), pp. 269280. Springer-Verlag, Berlin.CrossRef
Moore, J. ( 2002). Parasites and the Behavior of Animals, Oxford University Press, New York.
Mooring, M. S., Blumstein, D. T. and Stoner, C. J. ( 2004). The evolution of parasite-defence grooming in ungulates. Biological Journal of the Linnean Society 81, 1737.CrossRefGoogle Scholar
Munger, J. C. and Karasov, W. H. ( 1989). Sublethal parasites and host energy budgets. Tapeworm infection in white-footed mice. Ecology 70, 904921.Google Scholar
Munger, J. C. and Karasov, W. H. ( 1991). Sublethal parasites in white-footed mice. Impact on survival and reproduction. Canadian Journal of Zoology 69, 398404.Google Scholar
Murray, D. L., Cary, J. R. and Keith, L. B. ( 1997). Interactive effects of sublethal nematodes and nutritional status on snowshoe hare vulnerability to predation. Journal of Animal Ecology 66, 250264.CrossRefGoogle Scholar
Nelson, W. A., Bell, J. F., Clifford, C. M. and Keirans, J. E. ( 1977). Interaction of ectoparasites and their hosts. Journal of Medical Entomology 13, 389428.CrossRefGoogle Scholar
Neuhaus, P. ( 2003). Parasite removal and its impact on litter size and body condition in Columbian ground squirrels (Spermophilus columbianus). Proceedings of the Royal Society of London, B 270, S213S215.CrossRefGoogle Scholar
Ostfeld, R. S., Miller, M. C. and Hazler, K. R. ( 1996). Causes and consequences of tick (Ixodes scapularis) burdens on white-footed mice (Peromyscus leucopus). Journal of Mammalogy 77, 266273.CrossRefGoogle Scholar
Pacejka, A. J., Gratton, C. M. and Thompson, C. F. ( 1998). Do potentially virulent mites affect house wren (Troglodytes aedon) reproductive success? Ecology 79, 17971806.Google Scholar
Peters, R. H. ( 1983). The Ecological Implications of Body Size, Cambridge University Press, Cambridge.
Puchala, P. ( 2004). Detrimental effects of larval blow files (Protocalliphora azurea) on nestlings and breeding success of Tree Sparrows (Passer montanus). Canadian Journal of Zoology-Revue Canadienne De Zoologie 82, 12851290.CrossRefGoogle Scholar
Richner, H. ( 1998). Host-parasite interactions and life-history evolution. Zoology-Analysis of Complex Systems 101, 333344.Google Scholar
Roberts, M. G., Smith, G. and Grenfell, B. T. ( 1995). Mathematical models for macroparasites of wildlife. In Ecology of Infectious Diseases in Natural Populations, Vol. 6 ( ed. Grenfell, B. T. and Dobson, A. P.), pp. 177208. Cambridge University Press, Cambridge.CrossRef
Rozsa, L., Reiczigel, J. and Majoros, G. ( 2000). Quantifying parasites in samples of hosts. Journal of Parasitology 86, 228232.CrossRefGoogle Scholar
Shields, W. M. and Crook, J. R. ( 1987). Barn Swallow coloniality – a net cost for group breeding in the Adirondacks. Ecology 68, 13731386.CrossRefGoogle Scholar
Stenseth, N. C. and Lidicker, W. Z. ( 1992). Animal Dispersal: Small Mammals as a Model, Chapman and Hall, New York.
Tripet, F., Jacot, A. and Richner, H. ( 2002). Larval competition affects the life histories and dispersal behavior of an avian ectoparasite. Ecology 83, 935945.CrossRefGoogle Scholar
Tripet, F. and Richner, H. ( 1999). Density-dependent processes in the population dynamics of a bird ectoparasite Ceratophyllus gallinae. Ecology 80, 12671277.CrossRefGoogle Scholar
Walker, M., Steiner, S., Brinkhof, M. W. G. and Richner, H. ( 2003). Induced responses of nestling great tits reduce hen flea reproduction. Oikos 102, 6774.CrossRefGoogle Scholar
Zar, J. H. ( 1999). Biostatistical Analysis, 4 Edn. Prentice Hall, Upper Saddle River, New Jersey.