Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-28T22:42:24.263Z Has data issue: false hasContentIssue false

Autoxidation in milk rich in linoleic acid I. An objective method for measuring autoxidation and evaluating antioxidants

Published online by Cambridge University Press:  01 June 2009

G. S. Sidhu
Affiliation:
Food Research Laboratory, Division of Food Research, C.S.I.R.O., Sydney, N.S.W. 2113, Australia
M. A. Brown
Affiliation:
Food Research Laboratory, Division of Food Research, C.S.I.R.O., Sydney, N.S.W. 2113, Australia
A. R. Johnson
Affiliation:
Food Research Laboratory, Division of Food Research, C.S.I.R.O., Sydney, N.S.W. 2113, Australia

Summary

Autoxidation was studied in milk obtained from cows fed on formaldehyde-treated casein-safflower oil supplement. The fat of this milk contained high levels of linoleic acid. A rapid disappearance of dissolved oxygen (DO), measured by using an oxygen electrode, from milk samples stored at 0°C in tubes without headspace, coincided with the development of oxidized flavours detected organoleptically. A correlation coefficient of 0·9 with 69 degrees of freedom (P < 0·001) was obtained between the amount of DO disappearing and the taste panel scores for oxidized flavours.

Butylated hydroxyanisole, sesamol, nordihydroguaiaretic acid, ethoxyquin, or butylated hydroxyanisole with propylgallate or tocopherols, when added in emulsified form to the milk at the rate of 10–15 mg/l milk, checked the development of oxidized flavours and the rapid disappearance of DO. Other antioxidants tested were either ineffective or imparted off-flavours to milk.

Samples of mare's milk neither developed oxidized flavours nor showed rapid disappearance of DO over a test period of 8 d.

The oxygen electrode provides a convenient and sensitive method for studying autoxidation and evaluating antioxidants in milk.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bligh, E. G. & Dyer, W. J. (1959). Canadian Journal of Biochemistry and Physiology 37, 911.CrossRefGoogle Scholar
Cook, L. J., Scott, T. W. & Pan, Y. S. (1972). Journal of Dairy Research 39, 211.CrossRefGoogle Scholar
Dunkley, W. L. & Franke, A. A. (1967). Journal of Dairy Science 50, 1.CrossRefGoogle Scholar
Dunkley, W. L. & Jennings, W. G. (1951). Journal of Dairy Science 34, 1064.CrossRefGoogle Scholar
Edmondson, L. F., Douglas, F. W. Jr, Rainey, N. H. & Goering, H. K. (1972). Journal of Dairy Science 55, 677.Google Scholar
Glass, R. L. & Christopherson, S. W. (1969). Chemistry and Physics of Lipids 3, 405.CrossRefGoogle Scholar
Griffin, W. C. (1949). Journal of the Society of Cosmetic Chemists 1, 311.Google Scholar
Hamilton, J. W. & Tappel, A. L. (1963). Journal of the American Oil Chemists Society 40, 52.CrossRefGoogle Scholar
Heide-Jensen, J. (1968). In Metal Catalyzed Lipid Oxidation, Symposium 1967, p. 75. (Ed. Marcuso, R..) Göteborg: Svenska Institutet för Konserveringsforskning. SIK-Rapport no. 240.Google Scholar
Hilditch, T. P. & Williams, P. N. (1964). The Chemical Constitution of Natural Fats, 4th edn.London: Chapman and Hall.Google Scholar
Hills, G. L. & Thiel, C. C. (1946). Journal of Dairy Research 14, 340.CrossRefGoogle Scholar
Hood, R. L., Thompson, E. H. & Allen, C. E. (1972). International Journal of Biochemistry 3, 598.CrossRefGoogle Scholar
King, R. L. (1962). Journal of Dairy Science 45, 1165.CrossRefGoogle Scholar
King, R. L. (1968). Journal of Dairy Science 51, 1705.CrossRefGoogle Scholar
Kon, S. K. (1972). Milk and Milk Products in Human Nutrition, p. 10. United Nations Food and Agriculture Organization, FAO Nutritional Studies 27, 2nd edn, Rome.Google Scholar
Krukovsky, V. N. (1961). Journal of Agricultural and Food Chemistry 9, 439.CrossRefGoogle Scholar
Labuza, T. P. (1971). CRC Critical Reviews in Food Technology 2, 355.CrossRefGoogle Scholar
Parks, O. W. (1965). In Fundamentals of Dairy Chemistry, p. 197. (Eds Webb, B. H. and Johnson, A. H..) Westport, Conn.: AVI Publishing Company.Google Scholar
Parsons, A. M. (1968). In Metal Catalyzed Lipid Oxidation, Symposium 1967, p. 81. (Ed. Marcuse, R..) Göteborg: Svenska Institutet för Konserveringsforskning. SIK-Rapport no. 240.Google Scholar
Pont, E. G. (1952). Journal of Dairy Research 19, 316.CrossRefGoogle Scholar
Reiser, R. (1951). Federation Proceedings 10, 236.Google Scholar
Riemenschneider, R. W., Turer, J. & Speck, R. M. (1943). Oil and Soap 20, 169.CrossRefGoogle Scholar
Scott, T. W., Bready, P. J., Royal, A. J. & Cook, L. J. (1972). Search, Sydney 3, 170.Google Scholar
Scott, T. W., Cook, L. J., Ferguson, K. A., McDonald, I. W., Buchanan, R. A. & Hills, G. L. (1970). Australian Journal of Science 32, 291.Google Scholar
Scott, T. W., Cook, L. J. & Mills, S. C. (1971). Journal of the American Oil Chemists Society 48, 358.CrossRefGoogle Scholar
Shipe, W. F. (1964). Journal of Dairy Science 47, 221.CrossRefGoogle Scholar
Sidhu, G. S., Brown, M. A. & Johnson, A. R. (1973 a). Proceedings of the Australian Biochemical Society 6, 26.Google Scholar
Sidhu, F. S., Brown, M. A. & Johnson, A. R. (1973 b). Journal of Dairy Science 56, 635.CrossRefGoogle Scholar
Smith, G. J. & Dunkley, W. L. (1962). Journal of Dairy Science 45, 170.CrossRefGoogle Scholar
Smith, L. M., Dunkley, W. L. & Ronning, M. (1963). Journal of Dairy Science 46, 7.CrossRefGoogle Scholar
Tsai, L. & Smith, L. M. (1971). Lipids 6, 196.CrossRefGoogle Scholar
Yagi, K. (1970). Agricultural and Biological Chemistry 34, 142.CrossRefGoogle Scholar