Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-24T09:42:57.829Z Has data issue: false hasContentIssue false

Maximum Entropy (MaxEnt) as extreme distribution indicator of two Neotropical fruit fly parasitoids in irrigated drylands of Argentina

Published online by Cambridge University Press:  01 March 2022

Segundo R. Núñez-Campero*
Affiliation:
Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), Provincia de La Rioja, UNLaR, SEGEMAR, UNCa, CONICET, Entre Ríos y Mendoza s/n, (5301), Anillaco, La Rioja, Argentina Universidad Nacional de La Rioja (UNLAR), IBICOPA, Av. Luis M. de la Fuente s/n. (5300), La Rioja, Argentina
Carlos González
Affiliation:
Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), Provincia de La Rioja, UNLaR, SEGEMAR, UNCa, CONICET, Entre Ríos y Mendoza s/n, (5301), Anillaco, La Rioja, Argentina
Juan Rull
Affiliation:
Planta Piloto de Procesos Industriales Microbiológicos (PROIMI – CCT Tucumán – CONICET), Av. Belgrano y Pje. Caseros, San Miguel de Tucumán, Tucumán (4000), Argentina
Sergio M. Ovruski
Affiliation:
Planta Piloto de Procesos Industriales Microbiológicos (PROIMI – CCT Tucumán – CONICET), Av. Belgrano y Pje. Caseros, San Miguel de Tucumán, Tucumán (4000), Argentina
*
Author for correspondence: Segundo R. Núñez-Campero, Email: segundoricardo@gmail.com

Abstract

The figitid Ganaspis pelleranoi and the braconid Doryctobracon areolatus (Hym: Braconidae, Opiinae) are wide-ranging (from Florida, USA to Argentina) fruit fly parasitoids with tropical and subtropical distribution with a wet and temperate climate. In Argentina, both parasitoid species are thought to be restricted to the subtropical rainforests of the northwest and northeast, locally known as ‘Yungas’ and ‘Paranaense’ forests, respectively. However, these species recently have been recorded at the Monte and Thistle of the Prepuna eco-region, an arid region of central-western Argentina. Despite the extreme environmental conditions, anthropic artificial irrigation seems to be playing a fundamental role in fostering the presence and persistence of these species. Maximum Entropy (MaxEnt) models were developed to assess the suitability of these areas to harbor both species. The present work is a first approach to identify suitable areas for the distribution of these two fruit fly biological control agents in the American continent; based on 19 bioclimatic variables. Furthermore, the models resulting from including the new records in the ‘Monte’ eco-region suggest that local populations may become adapted to particular micro-environmental conditions generated by artificial irrigation. Models revealed that these artificial oases are suitable for G. pelleranoi but seem to be unsuitable for D. areolatus. This first and new approach to the area suitability of these species invites to produce models that reflect actual distribution including more records of presence in oases with similar conditions, thus decreasing the bias of the model generated by over reliance on areas with higher humidity (forest), which correspond to the distribution known before the inclusion of the new records.

Type
Research Paper
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiello-Lammens, ME, Boria, RA, Radosavljevic, A, Vilela, B and Anderson, RP (2015) spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541545.CrossRefGoogle Scholar
Almarinez, BJM, Fadri, MJA, Lasina, R, Tavera, MAA, Carvajal, TM, Watanabe, K, Legaspi, JC and Amalin, DM (2021) A bioclimate-based maximum entropy model for Comperiella calauanica barrion, almarinez and amalin (Hymenoptera: Encyrtidae) in the Philippines. Insects 12, 113.CrossRefGoogle ScholarPubMed
Aluja, M and Norrbom, AL (1999) Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior. Boca Raton, London, New York, Washington, DC: CRC Press LLC.CrossRefGoogle Scholar
Aluja, M, Rull, J, Sivinski, J, Norrbom, LA, Wharton, RA, Macías-Ordóñez, R, Díaz-Fleischer, F and López, M (2003) Fruit flies of the genus Anastrepha (Diptera: Tephritidae) and associated native parasitoids (hymenoptera) in the tropical rainforest biosphere reserve of Montes Azules, Chiapas, Mexico. Environmental Entomology 32, 13771385.CrossRefGoogle Scholar
Aluja, M, Sivinski, J, Ovruski, SM, Guillén, L, López, M, Cancino, J, Torres-Anaya, A, Gallegos-Chan, G and Ruíz, L (2009) Colonization and domestication of seven species of native New World hymenopterous larval-prepupal and pupal fruit fly (Diptera: Tephritidae) parasitoids. Biocontrol Science and Technology 19, 4979.CrossRefGoogle Scholar
Aruani, R, Ceresa, A, Granados, JC, Taret, G, Peruzzotti, P and Ortiz, G (1996) Advances in the national fruit fly control and eradication program in Argentina. In McPheron, BA and Steck, GJ (eds), Fruit Fly Pests: A World Assessment of Their Biology and Management. DelRay Beach, FL, USA: St. Lucie Press, pp. 521530.Google Scholar
Baldwin, RA (2009) Use of maximum entropy modeling in wildlife research. Entropy 11, 854866.CrossRefGoogle Scholar
Berger, AL, Pietra, SA and Della Pietra, VJ (1996) A maximum entropy approach to natural language processing. Computational Linguistics 22, 3971.Google Scholar
Cancino, J, Ruíz, L, Sivinski, J, Gálvez, FO and Aluja, M (2009) Rearing of five hymenopterous larval-prepupal (Braconidae, Figitidae) and three pupal (Diapriidae, Chalcidoidea, Eurytomidae) native parasitoids of the genus Anastrepha (Diptera: Tephritidae) on irradiated A. ludens larvae and pupae. Biocontrol Science and Technology 19, 193209.CrossRefGoogle Scholar
Cooper, GR (1995) Insect faunas in Ice Age environments: why so little extinction? In Lawton, J and May, RM (eds), Extinction Rates. Oxford: Oxford University Press, pp. 5574.Google Scholar
De Meyer, M, Copeland, RS, Wharton, RA and McPheron, BA (2002) On the geographic origin of the Medfly Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Proceedings of 6th International Fruit Fly Symposium, pp. 4553.Google Scholar
Dias, NP, Zotti, MJ, Montoya, P, Carvalho, IR and Nava, DE (2018) Fruit fly management research: a systematic review of monitoring and control tactics in the world. Journal of Crop Protection 112, 187200.CrossRefGoogle Scholar
Elith, J, Phillips, SJ, Hastie, T, Dudík, M, Chee, YE and Yates, CJ (2011) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17, 4357.CrossRefGoogle Scholar
Garcia, FRM, Ovruski, SM, Suárez, L, Cancino, J and Liburd, OE (2020) Biological control of tephritid fruit flies in the Americas and Hawaii: a review of the use of parasitoids and predators. Insects 11, 662.CrossRefGoogle ScholarPubMed
Godfray, HCJ, Hassell, MP and Holt, RD (1994) The population dynamic consequences of phenological asynchrony between parasitoids and their hosts. Journal of Animal Ecology 63, 110.CrossRefGoogle Scholar
Gonzalez, RH (1978) Introduction and spread of agricultural pests in Latin America: analysis and prospects. Plant Protection Bulletin FAO 26, 4152.Google Scholar
Grace, J (1987) Climatic tolerance and the distribution of plants. New Phytologist 106, 113130.CrossRefGoogle Scholar
Graham, CH, Ferrier, S, Huettmann, F, Moritz, C and Peterson, AT (2004) New developments in museum-based informatics and applications in biodiversity analysis. Trends in Ecology and Evolution 19, 497503.CrossRefGoogle Scholar
Guillen, D and Sanchez, R (2007) Expansion of the national fruit fly control programme in Argentina. In Vreysen, M, Robinson, A and Hendrich, J (eds), Area-Wide Control of Insect Pests: From Research to Field Implementation. Neteherlands: Springer, pp. 653660.CrossRefGoogle Scholar
Guisan, A and Thuiller, W (2005) Predicting species distribution: offering more than simple habitat models. Ecological Letters 8, 9931009.CrossRefGoogle ScholarPubMed
Guisan, A and Zimmermann, NE (2000) Predictive habitat distribution models in ecology. Ecological Modelling 135, 147186.CrossRefGoogle Scholar
Hance, T, van Baaren, J, Vernon, P and Boivin, G (2007) Impact of extreme temperatures on parasitoids in a climate change perspective. Annual Review of Entomology 52, 107126.CrossRefGoogle Scholar
Hernandez-Ortiz, V, Bartolucci, AF, Morales-Valles, P, Frías, D and Selivon, D (2012) Cryptic species of the Anastrepha fraterculus complex (Diptera: Tephritidae): a multivariate approach for the recognition of South American morphotypes. Annals of the Entomological Society of America 105, 305318.CrossRefGoogle Scholar
Hill, MP and Terblanche, JS (2014) Niche overlap of congeneric invaders supports a single-species hypothesis and provides insight into future invasion risk: implications for global management of the Bactrocera dorsalis complex. PLoS ONE 9, e90121.CrossRefGoogle ScholarPubMed
Hoffmann, AA and Harshman, LG (1999) Desiccation and starvation resistance in Drosophila: patterns of variation at the species, population, and intrapopulation levels. Heredity (Edinb) 83, 637643.CrossRefGoogle ScholarPubMed
Hoffmeister, T and Vidal, S (1994) The diversity of fruit fly (Diptera: Tephritidae) parasitoids. In Hawkins, BA and Sheehan, W (eds), Parasitoid Community Ecology. Oxford, England: Oxford University Press, pp. 4776.Google Scholar
Karger, DN, Conrad, O, Böhner, J, Kawohl, T, Kreft, H, Soria-Auza, RW, Zimmermann, NE, Linder, P and Kessler, M (2017) Climatologies at high resolution for the earth's land surface areas. Scientific Data 4, 120.CrossRefGoogle ScholarPubMed
Karger, DN, Conrad, O, Böhner, J, Kawohl, T, Kreft, H, Soria-Auza, RW, Zimmermann, NE, Linder, P and Kessler, M (2018) Data from: climatologies at high resolution for the earth's land surface areas, Dryad, Dataset. https://doi.org/10.5061/dryad.kd1d4.CrossRefGoogle Scholar
Kass, JM, Vilela, B, Aiello-Lammens, ME, Muscarella, R, Merow, C and Anderson, RP (2018) Wallace: a flexible platform for reproducible modeling of species niches and distributions built for community expansion. Methods in Ecology and Evolution 9, 11511156. https://doi-org.ezproxy.gc.cuny.edu/10.1111/2041-210X.12945.CrossRefGoogle Scholar
López, M, Aluja, M and Sivinski, J (1999) Hymenopterous larval–pupal and pupal parasitoids of Anastrephaflies (Diptera: Tephritidae) in Mexico. Biological Control 15, 119129.CrossRefGoogle Scholar
Matzkin, LM, Watts, TW and Markow, TA (2007) Desiccation resistance in four Drosophila species: sex and population effects. Fly (Austin) 1, 268273.CrossRefGoogle ScholarPubMed
Menu, F, Roebuck, J and Viala, M (2000) Bet-hedging diapause strategies in stochastic environments. The American Naturalist 155, 724734.CrossRefGoogle ScholarPubMed
Messenger, PS (1959) Bioclimatic studies with insects. Annual Review of Entomology 4, 183206.CrossRefGoogle Scholar
Morales, NS, Fernández, IC and Baca-González, V (2017) Maxent's parameters configuration and small samples: are we paying attention to recommendations? A systematic review. PeerJ 5, e3093.CrossRefGoogle ScholarPubMed
Morello, J, Matteucci, SD, Rodríguez, AF and Silva, ME (2012) Ecorregiones y Complejos ecositemicos argentinos, 1st edn. Buenos Aires: Orientación Grafica Editora.Google Scholar
Ovruski, SM (2002) New records of fruit fly parasitoids (Hymenoptera: Braconidae, Figitidae, Pteromalidae) for La Rioja Province, Northwestern Argentina. Proceedings of the Entomological Society of Washington 104, 10551057.Google Scholar
Ovruski, SM and Schliserman, P (2012) Biological control of Tephritid fruit flies in Argentina: historical review, current status, and future trends for developing a parasitoid mass-release program. Insects 3, 870888.CrossRefGoogle ScholarPubMed
Ovruski, SM, Aluja, M, Sivinski, J and Wharton, RA (2000) Hymenopteran parasitoids on fruit-infesting Tephritidae (Diptera) in Latin America and the southern United States: diversity, distribution, taxonomic status, and their use. Integrated Pest Management Reviews 5, 81107.CrossRefGoogle Scholar
Ovruski, SM, Schliserman, P and Aluja, M (2003) Native and introduced host plants of Anastrepha fraterculus and Ceratitis capitata (Diptera: Tephritidae) in Northwestern Argentina. Journal of Economic Entomology 96, 11081118.CrossRefGoogle ScholarPubMed
Ovruski, SM, Schliserman, P and Aluja, M (2004) Indigenous parasitoids (Hymenoptera) attacking Anastrepha fraterculus and Ceratitis capitata (Diptera: Tephritidae) in native and exotic host plants in Northwestern Argentina. Biological Control 29, 4357.CrossRefGoogle Scholar
Ovruski, SM, Oroño, LE, Nuñez-Campero, SR, Schliserman, P, Bezdjian, LP, Van Nieuwenhove, GA and Martin, CB (2008) A review of hymenopterous parasitoid guilds attacking Anastrepha spp. and Ceratitis capitata (Diptera: Tephritidae) in Argentina. In Suguyama, RL, Zucchi, RA, Ovruski, SM and Siviski, J (eds). Fruit Flies of Economic Importance: From Basic to Applied Knowledge. 7th International Symposium on Fruit Flies Economic Importance. Salvador: Biofábrica MOSCAMED Brazil, pp. 113125.Google Scholar
Ovruski, SM, Schliserman, P and Aluja, M (2015) Occurrence of diapause in neotropical parasitoids attacking Anastrepha fraterculus (Diptera: Tephritidae) in a subtropical rainforest from Argentina. Austral Entomology 55, 274283.CrossRefGoogle Scholar
Parmesan, C, Root, TL and Willig, MR (2000) Impacts of extreme weather and climate on terrestrial biota. Bulletin of the American Meteorological Society 81, 443450.2.3.CO;2>CrossRefGoogle Scholar
Pearson, RG and Dawson, TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography 12, 361371.CrossRefGoogle Scholar
Phillips, S, Dudík, M and Schapire, R (2004) A maximum entropy approach to species distribution modeling. Proceedings of the Twenty-First International Conference on Machine Learning, pp. 655662.CrossRefGoogle Scholar
Phillips, SJ, Anderson, RP and Schapire, RE (2006) Maximum Entropy modeling of species geographic distributions. Ecological Modelling 190, 231259.CrossRefGoogle Scholar
Phillips, SJ, Dudík, M and Schapire, RE (2018) MaxEnt software for modeling species niches and distributions. (Version 3.4.1). Available at: http://biodiversityinformatics.amnh.org/open_source/maxent/.Google Scholar
QGIS.org (2021) QGIS Geographic Information System. QGIS Association. http://www.qgis.org.Google Scholar
Rangarajan, A, Schedl, T, Yook, K, Chan, J, Haenel, S, Otis, L, Faelten, S, Depellegrin-Connelly, T, Isaacson, R, Skrzypek, MS, Marygold, SJ, Stefancsik, R, Cherry, JM, Sternberg, PW and Müller, H M (2011) Toward an interactive article: integrating journals and biological databases. BMC Bioinformatics 12, 18.CrossRefGoogle ScholarPubMed
Schliserman, P, Ovruski, SM, De Coll, OR and Wharton, R (2010) Diversity and abundance of hymenopterous parasitoids associated with Anastrepha fraterculus (Diptera: Tephritidae) in native and exotic host plants in Misiones, Northeastern Argentina. Florida Entomologist 93, 175182.CrossRefGoogle Scholar
Schliserman, P, Aluja, M, Rull, J and Ovruski, SM (2014) Habitat degradation and introduction of exotic plants favor persistence of invasive species and population growth of native polyphagous fruit fly pests in a Northwestern Argentinean mosaic. Biological Invasions 16, 25992613.CrossRefGoogle Scholar
Schliserman, P, Aluja, M, Rull, J and Ovruski, SM (2016) Temporal diversity and abundance patterns of parasitoids of fruit-infesting Tephritidae (Diptera) in the Argentinean Yungas: implications for biological control. Environmental Entomology 45, 11841198.CrossRefGoogle ScholarPubMed
Sivinski, J, Aluja, M and Lopez, M (1997) Spatial and temporal distributions of parasitoids of Mexican Anastrepha species (Diptera: Tephritidae) within the canopies of fruit trees. Annals of the Entomological Society of America 90, 604618.CrossRefGoogle Scholar
Sivinski, J, Pinero, J and Aluja, M (2000) The distributions of parasitoids (hymenoptera) of Anastrepha fruit flies (Diptera: Tephritidae) along an altitudinal gradient in Veracruz, Mexico. Biological Control 18, 258269.CrossRefGoogle Scholar
Steck, GJ (1991) Biochemical systematics and population genetic structure of Anastrepha fraterculus and related species (Diptera: Tephritidae). Annals of the Entomological Society of America 84, 1028.CrossRefGoogle Scholar
Tejeda, MT, Arredondo, J, Liedo, P, Pérez-Staples, D, Ramos-Morales, P and Díaz-Fleischer, F (2016) Reasons for success: rapid evolution for desiccation resistance and life-history changes in the polyphagous fly Anastrepha ludens. Evolution 70, 25832594.CrossRefGoogle ScholarPubMed
Thomson, LJ, Macfadyen, S and Hoffmann, AA (2010) Predicting the effects of climate change on natural enemies of agricultural pests. Biological Control 52, 296306.CrossRefGoogle Scholar
Tscharntke, T and Hawkins, BA (2002) Multitrophic level interactions: an introduction. In Tscharntke, T and Hawkins, BA (eds), Multitrophic Level Interactions. New York: Cambridge University Press, pp. 17.CrossRefGoogle Scholar
van Baaren, J, Le Lann, C and van Alphen, JJM (2010) Consequences of climate change for aphid-based multi-trophic systems. In Kindlmann, P, Dixon, AFG and Michaud, JP (eds), Aphid Biodiversity under Environmental Change. Dordrecht, The Netherlands: Springer Science, pp. 5567.CrossRefGoogle Scholar
Vanoye-Eligio, V, Mora-Olivo, A, Gaona-García, G, Reyes-Zepeda, F and Rocandio-Rodríguez, M (2017) Mexican fruit fly populations in the semi-arid highlands of the Sierra Madre Oriental in Northeastern Mexico. Neotropical Entomology 46, 380387.CrossRefGoogle ScholarPubMed
Vegiani, AR (1952) La Mosca del Mediterraneo. Publlicacion del Instituto de Sanidad Vegetal. Serie B. 22, 112.Google Scholar
Walther, G, Post, E, Convey, P, Menzel, A, Parmesan, C, Beebee, TJC, Jean-Marc Fromentin, J-M, Ove Hoegh-Guldberg, O and Bairlein, F (2002) Ecological responses to recent climate change. Nature 416, 389395.CrossRefGoogle ScholarPubMed
Supplementary material: File

Núñez-Campero et al. supplementary material

Núñez-Campero et al. supplementary material

Download Núñez-Campero et al. supplementary material(File)
File 56.3 MB