Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-01T08:45:25.244Z Has data issue: false hasContentIssue false

IMPLEMENTATION OF A DESIGN GUIDELINE FOR ALUMINUM FOAM SANDWICH BASED ON INDUSTRIAL DEMANDS

Published online by Cambridge University Press:  19 June 2023

Patrick Hommel*
Affiliation:
University of Stuttgart
Daniel Roth
Affiliation:
University of Stuttgart
Hansgeorg Binz
Affiliation:
University of Stuttgart
Matthias Kreimeyer
Affiliation:
University of Stuttgart
*
Hommel, Patrick, University of Stuttgart, Germany, patrick.hommel@iktd.uni-stuttgart.de

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Aluminum foam sandwich (AFS) is an innovative material for lightweight structures, consisting of an aluminum foam core surrounded by two face sheets of aluminum. The advantages of AFS are a low density combined with a high bending stiffness, good energy absorption properties, and high recyclability, meaning it can be used for many different applications. However, the number of realized series applications with AFS is low caused by a lack of design knowledge, as shown in various studies. In order to address this lack of design knowledge, a design guideline is to be developed. This paper focuses on the development of such a design guideline based on requirements and demands from the industry and presents a structure. In addition, the individual contents of the design guideline are explained in more detail in order to clarify how designers can be supported in the future when designing products with AFS, so that the full potential of this material can be realized. Finally, a survey in an industrial context evaluates the extent to which this design guideline is a useful form of support, in order to check whether its application can improve the design process with AFS.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2023. Published by Cambridge University Press

References

Banhart, J., García-Moreno, F., Heim, K. and Seeliger, H.-W. (2019), “Light-Weighting in Transportation and Defence Using Aluminium Foam Sandwich Structures”, In: Gokhale, A.A., Prasad, N.E. and Basu, B. (Eds.), Light Weighting for Defense, Aerospace, and Transportation, Springer, Singapore, pp. 6172. https://doi.org/10.1007/978-981-15-1263-6CrossRefGoogle Scholar
Blessing, L.T.M. and Chakrabarti, A. (2009), DRM, a Design Research Methodology, Springer, London. https://doi.org/10.1007/978-1-84882-587-1CrossRefGoogle Scholar
Degischer, P. and Lüftl, S. (2009): Leichtbau: Prinzipien, Werkstoffauswahl und Fertigungsvarianten, Wiley-VCH Verlag, Weinheim.CrossRefGoogle Scholar
Drossel, W.-G., Kroll, L., Drebenstedt, C., Eichler, J., Hackert, A. and Rybandt, S. (2018), “Metallschaumstrukturen und faserverstärkte Kunststoffe”, In: Kroll, L. (Ed.), Technologiefusion für multifunktionale Leichtbaustrukturen, Springer Vieweg, pp. 160191. https://doi.org/10.1007/978-3-662-54734-2_4Google Scholar
Ehrlenspiel, K. and Meerkamm, H. (2017), Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit, Hanser, München.CrossRefGoogle Scholar
Florek, R., Simančík, F., Harnúšková, J., Orovčík, L., Dvorák, T., Nosko, M. and Tekel, T. (2014), “Injection Molded Plastics with Aluminum Foam Core”, Procedia Materials Science, Vol. 4, pp. 323327. https://doi.org/10.1016/j.mspro.2014.07.566CrossRefGoogle Scholar
Friedrich, H.E. (2017), Leichtbau in der Fahrzeugtechnik, Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-12295-9CrossRefGoogle Scholar
Gomeringer, R., Kilgus, R., Menges, V., Oesterle, S., Rapp, T., Scholer, C., Stenzel, A., Stephan, A. and Wieneke, F. (2022), Tabellenbuch Metall mit Formelsammlung, Verlag Europa-Lehrmittel, Haan-Gruiten.Google Scholar
Hexcel (2000), HexWeb™ Honeycomb Sandwich Design Technology. [online]. Available at: https://www.hexcel.com/user_area/content_media/raw/Honeycomb_Sandwich_Design_Technology.pdf (accessed 07.10.2022).Google Scholar
Hipke, T., Lange, G. and Poss, R. (2007), Taschenbuch für Aluminiumschäume, Aluminium-Verlag, Düsseldorf.Google Scholar
Hohlfeld, J., Hipke, T. and Schuller, F. (2018), “Sandwich Manufacturing with Foam Core and Aluminum Face Sheets – A New Process without Rolling”, Materials Science Forum, Vol. 933, pp. 310. https://doi.org/10.4028/www.scientific.net/MSF.933.3CrossRefGoogle Scholar
Hommel, P., Roth, D. and Binz, H. (2020), “Deficits in the application of aluminum foam sandwich: An industrial perspective”, 16th International Design Conference, 26-29 October 2020, Cambridge University Press, pp. 927936. https://doi.org/10.1017/dsd.2020.13CrossRefGoogle Scholar
Hommel, P., Roth, D., Binz, H. (2021a), “Derivation of Motivators for the Use of Aluminum Foam Sandwich and Advantageous Applications”, Proceedings of the International Conference on Engineering Design (ICED21), Gothenburg, Sweden, 16-20 August 2021, pp. 933942. https://www.doi.org/10.1017/pds.2021.93CrossRefGoogle Scholar
Hommel, P., Roth, D. and Binz, H. (2021b), “Überwindung der Herausforderungen beim Konstruieren mit Aluminiumschaum-Sandwich”, Stuttgarter Symposium für Produktentwicklung (SSP 2021), Stuttgart, Germany, 20 May 2021, pp. 112. http://doi.org/10.18419/opus-11478CrossRefGoogle Scholar
Keller, A. and Binz, H. (2009), “Requirements on engineering design methodologies”, Proceedings of ICED 09, 17th International Conference on Engineering Design, Palo Alto, CA, USA, 24-27 June 2009, pp. 203214.Google Scholar
Klein, B. and Gänsicke, T. (2019), Leichtbau-Konstruktion: Dimensionierung, Strukturen, Werkstoffe und Gestaltung, Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-26846-6CrossRefGoogle Scholar
Krause, D., Schwenke, J., Gumpinger, T. and Plaumann, B. (2018), “Leichtbau”, In: Rieg, F. and Steinhilper, R. (Eds.), Handbuch Konstruktion, Carl Hanser Verlag, München, pp. 485507. https://doi.org/10.3139/9783446456198.017CrossRefGoogle Scholar
Pahl, G., Beitz, W., Feldhusen, J. and Grote, K.-H. (2007), Pahl/Beitz Konstruktionslehre: Grundlagen, Springer, Berlin Heidelberg. https://doi.org/10.1007/978-3-540-34061-4Google Scholar
Reuter, M. (2021), Methodik der Werkstoffauswahl: Der systematische Weg zum richtigen Material, Carl Hanser Verlag, München.Google Scholar
Schmidt, W. and Puri, W. (2001), “Betrachtungen zur Konzeptphase im Konstruktionsprozess von Leichtbauteilen”, Proceedings of the 12th Symposium on Design for X, Neukirchen, Germany, 11-12 October 2001, pp. 2128.Google Scholar
Seeliger, H.-W. (2011), “AFS-Weiterentwicklung erreicht Serienreife: Aluminiumschaum frisch vom Band”, Aluminium Kurier News, No. 03/2011, p. 16.Google Scholar
Trumpf (2011), Konstruktionsrichtlinie Blech 1009-1. Ditzingen.Google Scholar
Viehweger, B. and Sviridov, A. (2015), “Technologies for Forming and Foaming of Aluminium Foam Sandwich”, In: Tekkaya, A. E., Homberg, W. and Brosius, A. (Eds.), 60 Excellent Inventions in Metal Forming, Springer Vieweg, Berlin, Heidelberg, pp. 409414. http://doi.org/10.1007/978-3-662-46312-3_63CrossRefGoogle Scholar