Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T16:24:41.965Z Has data issue: false hasContentIssue false

Mosaic evolution in the middle Miocene planktonic foraminifera Fohsella lineage

Published online by Cambridge University Press:  27 February 2018

Weimin Si
Affiliation:
Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, New Jersey 08854, U.S.A. E-mail: wsi@eps.rutgers.edu
William A. Berggren
Affiliation:
Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, New Jersey 08854, U.S.A. E-mail: wsi@eps.rutgers.edu
Marie-Pierre Aubry
Affiliation:
Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, New Jersey 08854, U.S.A. E-mail: wsi@eps.rutgers.edu

Abstract

Recent studies have shown that modes of evolution, namely directional trend, random walk, and stasis, vary across morphologic traits and over the geographic range of a taxon. If so, is it possible that our interpretation of evolutionary modes is actually driven by our selection of traits in a study? In an attempt to answer this question, we have restudied the middle Miocene planktonic foraminifera Fohsella lineage, an iconic example of gradual morphologic evolution. In contrast to previous studies that have focused on the gross morphology as embodied by the edge view of tests, we analyze here multiple phenotypic traits chosen because their biologic and ecologic significance is well understood in living populations. We find that traits in the lineage did not evolve in concert. The timing and geographic pattern of changes in shape, coiling direction, size, and ecology were different. The evolution of this lineage is a mosaic combination of different evolutionary modes for different traits. We suggest that overemphasis on the evolution of some single trait, such as the edge-view outline, from narrow geographic ranges has significantly underestimated the dynamic evolutionary history of this group.

Type
Articles
Copyright
Copyright © 2018 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J. 2000. Understanding the dynamics of trends within evolving lineages. Paleobiology 26:319329.2.0.CO;2>CrossRefGoogle Scholar
Arnold, J. 1983. Phyletic evolution in the Globorotalia crassaformis (Galloway and Wissler) lineage—a preliminary report. Paleobiology 9:390397.Google Scholar
Birch, H., Coxall, H. K., Pearson, P. N., Kroon, D., and O’Regan, M.. 2013. Planktonic foraminifera stable isotopes and water column structure: disentangling ecological signals. Marine Micropaleontology 101:127145.Google Scholar
Blow, W. H., and Banner, F.. 1966. The morphology, taxonomy and biostratigraphy of Globorotalia barisanensis LeRoy, Globorotalia fohsi Cushman and Ellisor, and related taxa. Micropaleontology 12:286302.Google Scholar
Bolli, H. M. 1950. The direction of coiling in the evolution of some Globorotaliidae. Contributions from the Cushman Foundation for Foraminiferal Research 1:8289.Google Scholar
Bolli, H. M., and Saunders, J. B.. 1985. Oligocene to Holocene low latitude planktic foraminifera. Pp. 212215 in H. M. Bolli, J. B. Saunders, and K. Perch-Nielsen, eds. Plankton stratigraphy Vol. 1. Cambridge University Press, Cambridge.Google Scholar
Darling, K. F., and Wade, C. M.. 2008. The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes. Marine Micropaleontology 67:216238.CrossRefGoogle Scholar
Darling, K. F., Kucera, M., Pudsey, C. J., and Wade, C. M.. 2004. Molecular evidence links cryptic diversification in polar planktonic protists to Quaternary climate dynamics. Proceedings of the National Academy of Sciences USA 101:76577662.Google Scholar
de Vargas, C., Renaud, S., Hilbrecht, H., and Pawlowski, J.. 2001. Pleistocene adaptive radiation in Globorotalia truncatulinoides: genetic, morphologic, and environmental evidence . Paleobiology 27:104125.2.0.CO;2>CrossRefGoogle Scholar
Eisenach, A. R., and Kelly, D. C.. 2006. Coiling preferences and evolution in the middle Miocene Fohsella chronocline. Marine Micropaleontology 60:243257.Google Scholar
Eldredge, N., Thompson, J. N., Brakefield, P. M., Gavrilets, S., Jablonski, D., Jackson, J. B., Lenski, R. E., Lieberman, B. S., McPeek, M. A., and Miller, W.. 2005. The dynamics of evolutionary stasis. Paleobiology 31:133145.CrossRefGoogle Scholar
Fairbanks, R. G., Wiebe, P. H., and Be, A. W.. 1980. Vertical distribution and isotopic composition of living planktonic foraminifera in the Western North Atlantic. Science 207:6163.Google Scholar
Flower, B. P., and Kennett, J. P.. 1994. The middle Miocene climatic transition—East Antarctic ice-sheet development, deep-ocean circulation and global carbon cycling. Palaeogeography, Palaeoclimatology, Palaeoecology 108:537555.Google Scholar
Grey, M., Haggart, J. W., and Smith, P. L.. 2008. Variation in evolutionary patterns across the geographic range of a fossil bivalve. Science 322:12381241.Google Scholar
Hayashi, H., Idemitsu, K., Wade, B. S., Idehara, Y., Kimoto, K., Nishi, H., and Matsui, H.. 2013. Middle Miocene to Pleistocene planktonic foraminiferal biostratigraphy in the eastern equatorial Pacific Ocean. Paleontological Research 17:91109.Google Scholar
Hemleben, C., Spindler, M., and Anderson, O. R.. 1989. Modern planktonic foraminifera. Springer-Verlag, New York.CrossRefGoogle Scholar
Hodell, D. A., and Vayavananda, A.. 1993. Middle Miocene paleoceanography of the western equatorial Pacific (DSDP site 289) and the evolution of Globorotalia (Fohsella). Marine Micropaleontology 22:279310.Google Scholar
Holbourn, A., Kuhnt, W., Frank, M., and Haley, B. A.. 2013. Changes in Pacific Ocean circulation following the Miocene onset of permanent Antarctic ice cover. Earth and Planetary Science Letters 365:3850.CrossRefGoogle Scholar
Holbourn, A., Kuhnt, W., Lyle, M., Schneider, L., Romero, O., and Andersen, N.. 2014. Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling. Geology 42:1922.Google Scholar
Hopkins, M. J., and Lidgard, S.. 2012. Evolutionary mode routinely varies among morphological traits within fossil species lineages. Proceedings of the National Academy of Sciences USA 109:2052020525.Google Scholar
Huber, B. T., Bijma, J., and Darling, K.. 1997. Cryptic speciation in the living planktonic foraminifer Globigerinella siphonifera (d’Orbigny). Paleobiology 23:3362.Google Scholar
Hull, P. M., and Norris, R. D.. 2009. Evidence for abrupt speciation in a classic case of gradual evolution. Proceedings of the National Academy of Sciences USA 106:2122421229.Google Scholar
Hunt, G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology 32:578601.Google Scholar
Hunt, G., Hopkins, M. J., and Lidgard, S.. 2015. Simple versus complex models of trait evolution and stasis as a response to environmental change. Proceedings of the National Academy of Sciences 112:48854890.Google Scholar
Keller, G. 1985. Depth stratification of planktonic foraminifers in the Miocene ocean. Geological Society of America Memoirs 163:177196.Google Scholar
Kennett, J. P., and Srinivasan, M.. 1983. Neogene planktonic foraminifera: a phylogenetic atlas. Hutchinson Ross, Stroudsburg, Pa.Google Scholar
Kirkpatrick, M., and Barton, N. H.. 1997. Evolution of a species’ range. American Naturalist 150:123.CrossRefGoogle ScholarPubMed
Kučera, M., and Kennett, J. P.. 2002. Causes and consequences of a middle Pleistocene origin of the modern planktonic foraminifer Neogloboquadrina pachyderma sinistral. Geology 30:539542.2.0.CO;2>CrossRefGoogle Scholar
Lazarus, D., Hilbrecht, H., Spencer-Cervato, C., and Thierstein, H.. 1995. Sympatric speciation and phyletic change in Globorotalia truncatulinoides . Paleobiology 21:2851.Google Scholar
Malmgren, B. A., Berggren, W. A., and Lohmann, G. P.. 1983. Evidence for punctuated gradualism in the Late Neogene Globorotalia tumida lineage of planktonic-foraminifera. Paleobiology 9:377389.Google Scholar
Miller, K. G., Baluyot, R., Wright, J. D., Kopp, R. E., and Browning, J. V.. 2017. Closing an early Miocene astronomical gap with Southern Ocean δ18O and δ13C records: implications for sea level change, Paleoceanography 32:10.1002/2016PA003074.CrossRefGoogle Scholar
Nathan, S. A., and Leckie, R. M.. 2009. Early history of the Western Pacific Warm Pool during the middle to late Miocene (~13.2–5.8 Ma): role of sea-level change and implications for equatorial circulation. Palaeogeography, Palaeoclimatology, Palaeoecology 274:140159.CrossRefGoogle Scholar
Norris, R. D. 1991. Parallel evolution in the keel structure of planktonic foraminifera. Journal of Foraminiferal Research 21:319331.Google Scholar
Norris, R. D. 2000. Pelagic species diversity, biogeography, and evolution. Paleobiology 26:236258.Google Scholar
Norris, R. D., Corfield, R. M., and Cartlidge, J. E.. 1993. Evolution of depth ecology in the planktic foraminifera lineage Globorotalia (Fohsella). Geology 21:975978.Google Scholar
Norris, R. D., Corfield, R. M., and Cartlidge, J. E.. 1996. What is gradualism? Cryptic speciation in globorotaliid foraminifera. Paleobiology 22:386405.CrossRefGoogle Scholar
Olsson, R. K. 1971. The logarithmic spire in planktonic foraminifera: its use in taxonomy, evolution, and paleoecology. Gulf Coast Association of Geological Societies Transactions 21:419432.Google Scholar
Pearson, P. N., and Ezard, T. H. G.. 2014. Evolution and speciation in the Eocene planktonic foraminifer Turborotalia . Paleobiology 40:130143.Google Scholar
Schmidt, D. N., Renaud, S., Bollmann, J., Schiebel, R., and Thierstein, H. R.. 2004. Size distribution of Holocene planktic foraminifer assemblages: biogeography, ecology and adaptation. Marine Micropaleontology 50:319338.Google Scholar
Sheets, H. D., and Mitchell, C. E.. 2001. Why the null matters: statistical tests, random walks and evolution. Genetica 112:105125.Google Scholar
Stewart, J. A., Wilson, P. A., Edgar, K. M., Anand, P., and James, R. H.. 2012. Geochemical assessment of the palaeoecology, ontogeny, morphotypic variability and palaeoceanographic utility of “Dentoglobigerinavenezuelana . Marine Micropaleontology 84:7486.Google Scholar
Tabachnick, R. E., and Bookstein, F. L.. 1990. The structure of individual variation in Miocene Globorotalia . Evolution 44:416434.Google Scholar
Ujiié, Y., and Asami, T.. 2014. Temperature is not responsible for left-right reversal in pelagic unicellular zooplanktons. Journal of Zoology 293:1624.Google Scholar
van Sebille, E., Scussolini, P., Durgadoo, J. V., Peeters, F. J., Biastoch, A., Weijer, W., Turney, C., Paris, C. B., and Zahn, R.. 2015. Ocean currents generate large footprints in marine palaeoclimate proxies. Nature Communication 6:6521. doi: 10.1038/ncomms7521.Google Scholar
Wright, J. D., Miller, K. G., and Fairbanks, R. G.. 1992. Early and middle Miocene stable isotopes: implications for deepwater circulation and climate. Paleoceanography 7:357389.Google Scholar
Zelditch, M. L., Swiderski, D. L., and Sheets, H. D.. 2004. Geometric morphometrics for biologists: a primer. Elsevier, Amsterdam.Google Scholar
Zhang, Y. G., Pagani, M., and Liu, Z.. 2014. A 12-million-year temperature history of the tropical Pacific Ocean. Science 344:8487.Google Scholar