Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T12:09:13.267Z Has data issue: false hasContentIssue false

Inferring skeletal production from time-averaged assemblages: skeletal loss pulls the timing of production pulses towards the modern period

Published online by Cambridge University Press:  30 October 2015

Adam Tomašových
Affiliation:
Earth Science Institute, Slovak Academy of Sciences, Dubravska cesta 9, 84005, Bratislava, Slovakia. E-mail: geoltoma@savba.sk
Susan M. Kidwell
Affiliation:
University of Chicago, Department of Geophysical Sciences, 5734 S. Ellis Avenue, Chicago, Illinois 60637
Rina Foygel Barber
Affiliation:
University of Chicago, Department of Statistics, University of Chicago, 5734 S. University Avenue, Chicago, Illinois 60637

Abstract

Age-frequency distributions of dead skeletal material on the landscape or seabed—information on the time that has elapsed since the death of individuals—provide decadal- to millennial-scale perspectives both on the history of production and on the processes that lead to skeletal disintegration and burial. So far, however, models quantifying the dynamics of skeletal loss have assumed that skeletal production is constant during time-averaged accumulation. Here, to improve inferences in conservation paleobiology and historical ecology, we evaluate the joint effects of temporally variable production and skeletal loss on postmortem age-frequency distributions (AFDs) to determine how to detect fluctuations in production over the recent past from AFDs. We show that, relative to the true timing of past production pulses, the modes of AFDs will be shifted to younger age cohorts, causing the true age of past pulses to be underestimated. This shift in the apparent timing of a past pulse in production will be stronger where loss rates are high and/or the rate of decline in production is slow; also, a single pulse coupled with a declining loss rate can, under some circumstances, generate a bimodal distribution. We apply these models to death assemblages of the bivalve Nuculana taphria from the Southern California continental shelf, finding that: (1) an onshore-offshore gradient in time averaging is dominated by a gradient in the timing of production, reflecting the tracking of shallow-water habitats under a sea-level rise, rather than by a gradient in disintegration and sequestration rates, which remain constant with water depth; and (2) loss-corrected model-based estimates of the timing of past production are in good agreement with likely past changes in local production based on an independent sea-level curve.

Type
Articles
Copyright
Copyright © 2015 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alexander, C. R., and Lee, H. J.. 2009. Sediment accumulation on the Southern California Bight continental margin during the twentieth century. Geological Society of America Special Paper 454, 6987.Google Scholar
Aller, R. C. 1982. Carbonate dissolution in nearshore terrigenous muds: the role of physical and biological reworking. Journal of Geology 90:7995.CrossRefGoogle Scholar
Aller, R. C 2014. Sedimentary diagenesis, depositional environments, and benthic fluxes. Pp. 293334in H. Holland, and K. Turekian, eds. Treatise on Geochemistry Volume 8. The oceans and marine geochemistry.CrossRefGoogle Scholar
Berkeley, A., Perry, C. T., Smithers, S. G., and Hoon, S.. 2014. Towards a formal description of foraminiferal assemblage formation in near shore environments: qualitative and quantitative concepts. Marine Micropalaeontology 112:2738.CrossRefGoogle Scholar
Brachert, T. C., and Dullo, W.-C.. 2000. Shallow burial diagenesis of skeletal carbonates: Selective loss of aragonite shell material (Miocene to Recent, Queensland Plateau and Queensland Trough, NE Australia) - implications for shallow cool-water carbonates. Sedimentary Geology 136:169187.CrossRefGoogle Scholar
Burnham, K. P., and Anderson, D. R.. 2002. Model selection and multimodel inference. A practical information-theoretic approach, 2nd edition. Springer.Google Scholar
Bush, A. M., and Bambach, R. K.. 2004. Did alpha diversity increase during the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases in the study of paleocommunities. Journal of Geology 112:625642.CrossRefGoogle Scholar
Cameron, N. G. 1995. The representation of diatom communities by fossil assemblages in a small acid lake. Journal of Paleolimnology 14:185223.CrossRefGoogle Scholar
Colchero, F., and Clark, J. S.. 2012. Bayesian inference on age-specific survival for censored and truncated data. Journal of Animal Ecology 81:139149.CrossRefGoogle ScholarPubMed
Conan, S. M.-H., Ivanova, E. M., and Brummer, G.-J. A.. 2002. Quantifying carbonate dissolution and calibration of foraminiferal dissolution indices in the Somali Basin. Marine Geology 182:325349.CrossRefGoogle Scholar
Cummins, H., Powell, E. N., Stanton, R. J. Jr., and Staff, G.. 1986. The rate of taphonomic loss in modern benthic habitats: how much of the potentially preservable community is preserved? Palaeogeography Palaeoclimatology Palaeoecology 52:291320.CrossRefGoogle Scholar
Dawson, J. L., Smithers, S. G., and Hua, Q.. 2014. The importance of large benthic foraminifera to reef island sediment budget and dynamics at Raine Island, northern Great Barrier Reef. Geomorphology 222:6881.CrossRefGoogle Scholar
Davies, D. J., Powell, E. N., and Stanton, R. J. Jr. 1989. Relative rates of shell dissolution and net sediment accumulation—a commentary: can shell beds form by the gradual accumulation of biogenic debris on the sea floor? Lethaia 22:207212.CrossRefGoogle Scholar
Dexter, T. A., Kaufman, D. S., Krause, R. A. Jr., Barbour Wood, S. L., Simoes, M. G., Huntley, J. W., Yanes, Y., Romanek, C. S., and Kowalewski, M.. 2014. A continuous multi-millennial record of surficial bivalve mollusk shells from the Sao Paulo Bight, Brazilian shelf. Quaternary Research 81:274283.CrossRefGoogle Scholar
Dittert, N., and Henrich, R.. 2000. Carbonate dissolution in the South Atlantic Ocean: Evidence from ultrastructure breakdown in Globigerina bulloides. Deep-Sea Research 47:603620.CrossRefGoogle Scholar
Ezard, T. H. G., Pearson, P. N., Aze, T., and Purvis, A.. 2012. The meaning of birth and death (in macroevolutionary birth–death models). Biology Letters. doi: 10.1098/rsbl.2011.0699.CrossRefGoogle ScholarPubMed
Flessa, K. W. 1998. Well-traveled cockles: shell transport during the Holocene transgression of the southern North Sea. Geology 26:187190.2.3.CO;2>CrossRefGoogle Scholar
Flessa, K. W., Cutler, A. H., and Meldahl, K. H.. 1993. Time and taphonomy: quantitative estimates of time-averaging and stratigraphic disorder in a shallow marine habitat. Paleobiology 19:266286.CrossRefGoogle Scholar
Foote, M., and Raup, D.. 1996. Fossil preservation and the stratigraphic ranges of taxa. Paleobiology 22:121140.CrossRefGoogle ScholarPubMed
Ford, M. R., and Kench, P. S.. 2012. The durability of bioclastic sediments and implications for coral reef deposit formation. Sedimentology 59:830842.CrossRefGoogle Scholar
Gilinsky, N. L. 1988. Survivorship in the Bivalvia: comparing living and extinct genera and families. Paleobiology 14:370386.CrossRefGoogle Scholar
Glover, C. E., and Kidwell, S. M.. 1993. Influence of organic matrix on the post-mortem destruction of molluscan shells. Journal of Geology 101:729747.CrossRefGoogle Scholar
Hassan, G. S. 2015. On the benefits of being redundant: Low compositional fidelity of diatom death assemblages does not hamper the preservation of environmental gradients in shallow lakes. Paleobiology 41:154173.CrossRefGoogle Scholar
Hover, V. C., Walter, L.M., and Peacor, D. R.. 2001. Early marine diagenesis of biogenic aragonite and Mg-calcite: New constraints from high-resolution STEM and AEM analyses of modern platform carbonates. Chemical Geology 175:221248.CrossRefGoogle Scholar
Hu, X., and Burdige, D. J.. 2007. Enriched stable carbon isotopes in the pore waters of carbonate sediments dominated by seagrasses: evidence for coupled carbonate dissolution and reprecipitation. Geochimica et Cosmochimica Acta 71:129144.CrossRefGoogle Scholar
Hughen, K. A., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Bertrand, C. J. H., Blackwell, P. G., Buck, C. E., Burr, G. S., Cutler, K. B., Damon, P. E., Edwards, R. L., Fairbanks, R. G., Friedrich, M., Guilderson, T. P., Kromer, B., McCormac, F. G., Manning, S. W., Bronk Ramsey, C., Reimer, P. J., Reimer, R. W., Remmele, S., Southon, J. R., Stuiver, M., Talamo, S., Taylor, F. W., van der Plicht, J., and Weyhenmeyer, C. E.. 2004. Marine04 Marine radiocarbon age calibration, 26 - 0 ka BP. Radiocarbon 46:10591086.CrossRefGoogle Scholar
Hunt, G. 2004. Phenotypic variation in fossil samples: modeling the consequences of time-averaging. Paleobiology 30:426443.2.0.CO;2>CrossRefGoogle Scholar
Jarochowska, E. 2012. High-resolution microtaphofacies analysis of a carbonate tidal channel and tidally influenced lagoon, Pigeon Creek, San Salvador Island, Bahamas. Palaios 27:151170.CrossRefGoogle Scholar
Kaufman, D. S., and Manley, W. F.. 1998. A new procedure for determining DL amino acid ratios in fossils using reverse phase liquid chromatography. Quaternary Science Reviews 17:9871000.CrossRefGoogle Scholar
Kavvadias, V.A., Alifragis, D., Tsiontsis, A., Brofas, G., and Stamatelos, G.. 2001. Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece. Forest Ecology and Management 144:113127.CrossRefGoogle Scholar
Kemp, D. B., and Sadler, P. M.. 2014. Climatic and eustatic signals in a global compilation of shallow marine carbonate accumulation rates. Sedimentology 61:12861297.CrossRefGoogle Scholar
Kidwell, S. M. 1989. Stratigraphic condensation of marine transgressive records: origin of major shell deposits in the Miocene of Maryland. Journal of Geology 97:124.CrossRefGoogle Scholar
Kidwell, S. M. 2007. Discordance between living and death assemblages as evidence for anthropogenic ecological change. Proceedings of the National Academy of Sciences USA 104:1770117706.CrossRefGoogle ScholarPubMed
Kidwell, S. M. 2013. Time-averaging and fidelity of modern death assemblages: building a taphonomic foundation for conservation palaeobiology. Palaeontology 56:487522.CrossRefGoogle Scholar
Kidwell, S. M., and Bosence, D. W. J.. 1991. Taphonomy and time averaging of marine shelly faunas. In P.A. Allison, and D.E.G. Briggs, eds. Taphonomy: Releasing the Data Locked in the Fossil Record. Plenum Press, New York, 115209.CrossRefGoogle Scholar
Kidwell, S. M., Best, M. M. R., and Kaufmann, D. S. 2005. Taphonomic trade-offs in tropical marine death assemblages: differential time averaging, shell loss, and probable bias in siliciclastic vs. carbonate facies. Geology 33:729732.CrossRefGoogle Scholar
Kidwell, S. M., and Tomasovych, A.. 2013. Implications of time-averaged death assemblages for ecology and conservation biology. Annual Reviews of Ecology. Evolution, and Systematics 44:539563.CrossRefGoogle Scholar
Kleinbaum, D. G., and Klein, M.. 2005. Survival Analysis. A Self-Learning Text, 2nd edition. Springer, New York.CrossRefGoogle Scholar
Kosnik, M. A., and Kaufman, D. S.. 2008. Identifying outliers and assessing the accuracy of amino acid racemization measurements for geochronology: II. Data screening. Quaternary Geochronology 3:328341.CrossRefGoogle Scholar
Kosnik, M.A., Hua, Q., Kaufman, D.S., and Wüst, R.A.. 2009. Taphonomic bias and time-averaging in tropical molluscan death assemblages: differential shell half lives in Great Barrier Reef sediment. Paleobiology 35:565586.CrossRefGoogle Scholar
Kosnik, M. A., Kaufman, D. S., and Hua, Q.. 2013. Radiocarbon-calibrated multiple amino acid geochronology of Holocene molluscs from Bramble and Rib reefs (Great Barrier Reef). Quaternary Geochronology 16:7386.CrossRefGoogle Scholar
Kosnik, M. A., Hua, Q., Kaufman, D. S., and Zawadzki, A.. 2014. Sediment accumulation, stratigraphic order, and the extent of time-averaging in lagoonal sediments: a comparison of 210Pb and 14C/amino acid racemization chronologies. Coral reefs 34:215229.CrossRefGoogle Scholar
Kotler, E., Martin, R. E., and Liddell, W. D.. 1992. Experimental analysis of abrasion and dissolution resistance of modern reef-dwelling Foraminifera: implications for the preservation of biogenic carbonate. Palaios 7:244276.CrossRefGoogle Scholar
Kowalewski, M., Goodfriend, G. A., and Flessa, K. W.. 1998. High resolution estimates of temporal mixing within shell beds: the evils and virtues of time-averaging. Paleobiology 24:287304.Google Scholar
Kowalewski, M., Avila Serrano, G. E., Flessa, K. W., and Goodfriend, G. A.. 2000. Dead delta’s former productivity: Two trillion shells at the mouth of the Colorado River. Geology 28:10591062.2.0.CO;2>CrossRefGoogle Scholar
Krause, R. A. Jr., Barbour, S. L., Kowalewski, M., Kaufman, D. S., Romanek, C. S., Simoes, M. G., and Wehmiller, J. F.. 2010. Quantitative comparisons and models of time-averaging in bivalve and brachiopod shell accumulations. Paleobiology 36:428452.CrossRefGoogle Scholar
Krug, A. Z., Jablonski, D., and Valentine, J. W.. 2009. Signature of the end-Cretaceous mass extinction in the modern biota. Science 323:767771.CrossRefGoogle ScholarPubMed
Leorri, E., and Martin, R. E.. 2009. The input of foraminiferal infaunal populations to sub-fossil assemblages along an elevational gradient in a salt marsh: application to sea-level studies in the mid-Atlantic coast of North America. Hydrobiologia 625:6981.CrossRefGoogle Scholar
Miller, J. H., Behrensmeyer, A. K., Du, A., Lyons, S. K., Patterson, D., Toth, A., Villasenor, A., Kanga, E., and Reed, D.. 2014. Ecological fidelity of functional traits based on species presence-absence in a modern mammalian bone assemblage (Amboseli, Kenya). Paleobiology 40:560583.CrossRefGoogle Scholar
Meldahl, K. E., Flessa, K. W., and Cutler, A. H.. 1997. Time-averaging and postmortem skeletal survival in benthic fossil assemblages: quantitative comparisons among Holocene environments. Paleobiology 23:207229.CrossRefGoogle Scholar
Morse, J. W., and Casey, W. H.. 1988. Ostwald processes and mineral paragenesis in sediments. American Journal of Science 288:537560.CrossRefGoogle Scholar
Nardin, T. R., Osborne, R. H., Bottjer, D. J., and Scheidemann, R. C.. 1981. Holocene sea-level curves for Santa Monica shelf, California Continental Borderland. Science 213:331333.CrossRefGoogle Scholar
Olszewski, T. 1999. Taking advantage of time-averaging. Paleobiology 25:226238.CrossRefGoogle Scholar
Olszewski, T. D. 2004. Modeling the influence of taphonomic destruction, reworking, and burial on time-averaging in fossil accumulations. Palaios 19:3950.2.0.CO;2>CrossRefGoogle Scholar
Olszewski, T. D 2012. Remembrance of things past: modeling the relationship between species’ abundances in living communities and death assemblages. Biology Letters 8:131134.CrossRefGoogle ScholarPubMed
Olszewski, T. D., and Kaufman, D. S. 2015. Tracing burial history and sediment recycling in a shallow estuarine setting (Copano Bay, Texas) using postmortem ages of the bivalve Mulinia lateralis. Palaios 30:224237.CrossRefGoogle Scholar
Pandolfi, J. M., Connolly, S. R., Marshall, D. J., and Cohen, A. L.. 2011. Projecting Coral Reef Futures Under Global Warming and Ocean Acidification. Science 333:418422.CrossRefGoogle ScholarPubMed
Perry, C. T. 1999. Biofilm-related calcification, sediment trapping and constructive micrite envelopes: A criterion for the recognition of ancient grass-bed environments? Sedimentology 46:3345.CrossRefGoogle Scholar
Perry, C. T., Murphy, G. N., Kench, P. S., Edinger, E. N., Smithers, S. G., Steneck, R. S., and Mumby, P. J.. 2014. Changing dynamics of Caribbean reef carbonate budgets: emergence of reef bioeroders as critical controls on present and future reef growth potential. Proceedings of the Royal Society B 281:20142018.CrossRefGoogle ScholarPubMed
Powell, E. N., Kraeuter, J. N., and Ashton-Alcox, K. A.. 2006. How long does oyster shell last on an oyster reef? Estuarine, Coastal and Shelf Science 69:531542.CrossRefGoogle Scholar
Powell, E. N., Callender, W. R., Staff, G. M., Parsons-Hubbard, K. M., Brett, C. E., Walker, S. E., Raymond, A., and Ashton-Alcox, K. A.. 2008. Molluscan shell condition after eight years on the sea floor – taphonomy in the Gulf of Mexico and Bahamas. Journal of Shellfish Research 27:191225.CrossRefGoogle Scholar
Powell, E. N., Staff, G. M., Callender, W. R., Ashton-Alcox, K. A., Brett, C. E., Parsons-Hubbard, K. M., Walker, S. E., and Raymond, A. 2011. Taphonomic degradation of molluscan remains during thirteen years on the continental shelf and slope of the northwestern Gulf of Mexico. Palaeogeography, Palaeoclimatology, Palaeoecology 312:209232.CrossRefGoogle Scholar
R Development Core Team. 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org.Google Scholar
Ranasinghe, J. A., Montagne, D. E., Smith, R. W., Mikel, T., Weisberg, S. B., Cadien, D., Velarde, R. G., and Dalkey, A.. 2003. Southern California Bight 1998 Regional Monitoring Program: VII. Benthic Macrofauna. Southern California Coastal Water Research Project, Westminster, CA.Google Scholar
Reid, R. P., and Macintyre, I. G.. 1998. Carbonate recrystallization in shallow marine environments: A widespread diagenetic process forming micritized grains. Journal of Sedimentary Research 68:928946.CrossRefGoogle Scholar
Rivers, J. M., James, N. P., and Kyser, T.K. 2008. Early diagenesis of carbonates on a cool-water carbonate shelf, southern Australia. Journal of Sedimentary Research 78:784802.CrossRefGoogle Scholar
Scarponi, D., Kaufman, D. S., Amorosi, A., and Kowalewski, M.. 2013. Sequence stratigraphy and the resolution of the fossil record. Geology 41:239242.CrossRefGoogle Scholar
Seilacher, A. 1985. The Jeram model: event condensation in a modern intertidal environment. In U. Bayer, and A. Seilacher, eds. Sedimentary and evolutionary cycles. Lecture Notes in Earth Sciences 1:335341.CrossRefGoogle Scholar
Simon, A., Poulicek, M., Velimirov, B., and MacKenzie, F. T.. 1994. Comparison of anaerobic and aerobic biodegradation of mineralized skeletal structures in marine and estuarine conditions. Biogeochemistry 25:167195.CrossRefGoogle Scholar
Smith, S. D. A. 2008. Interpreting molluscan death assemblages on rocky shores: Are they representative of the regional fauna? Journal Experimental Marine Biology Ecology 366:151159.CrossRefGoogle Scholar
Stebbins, T. D., Schiff, K. C., and Ritter, K.. 2004. San Diego Sediment Mapping Study: Workplan for Generating Scientifically Defensible Maps of Sediment Conditions in the San Diego Region. City of San Diego, Metropolitan Wastewater Department, Environmental Monitoring and Technical Services Division, and Southern California Coastal Water Research Project, Westminster, CA.Google Scholar
Stuiver, M., and Reimer, P. J.. 1993. Extended 14C data base and revised CALIB 3.0 C age calibration program. Radiocarbon 35:215230.CrossRefGoogle Scholar
Terry, R. C. 2010. The dead don’t lie: using skeletal remains for rapid assessment of historical small-mammal community baselines. Proceedings of the Royal Society B 277:11931201.CrossRefGoogle Scholar
Terry, R. C., Li, C. L., and Hadly, E. A.. 2011. Predicting small-mammal responses to climatic warming: autecology, the geographic range, and Holocene warming. Global Change Biology 17:30193034.CrossRefGoogle Scholar
Terry, R. C., and Novak, M.. 2015. Where does the time go?: Mixing and the depth-dependent distribution of fossil ages. Geology (in press).CrossRefGoogle Scholar
Tomašových, A., and Kidwell, S. M.. 2010. Predicting the effects of increasing temporal scale on species composition, diversity, and rank-abundance distributions. Paleobiology 36:672695.CrossRefGoogle Scholar
Tomašových, A., and Kidwell, S. M.. 2011. Accounting for the effects of biological variability and temporal autocorrelation in assessing the preservation of species abundance. Paleobiology 37:332354.CrossRefGoogle Scholar
Tomašových, A., Kidwell, S. M., Foygel Barber, R., and Kaufman, D. S.. 2014. Long-term accumulation of carbonate shells reflects a 100-fold drop in loss rate. Geology 42:819822.CrossRefGoogle Scholar
Waldbusser, G. G., and Salisbury, J. E.. 2014. Ocean acidification in the coastal zone from an organism’s perspective: multiple system parameters, frequency domains, and habitats. Annual Review of Marine Science 6:221247.CrossRefGoogle ScholarPubMed
Waldbusser, G. G., Steenson, R. A., and Green, M. A.. 2011. Oyster shell dissolution rates in estuarine waters: effects of pH and shell legacy. Journal of Shellfish Research 30:659669.CrossRefGoogle Scholar
Waldbusser, G. G., Powell, E. N., and Mann, R.. 2013. Ecosystem effects of shell aggregations and cycling in coastal waters: an example of Chesapeake Bay oyster reefs. Ecology 94:895903.CrossRefGoogle Scholar
Walter, L. M., and Morse, J. W.. 1984. Reactive surface area of skeletal carbonates during dissolution: effect of grain size. Journal of Sedimentary Petrology 54:10811090.Google Scholar
Warme, J. E. 1969. Live and dead mollusks in a coastal lagoon. Journal of Paleontology 43:141150.Google Scholar