Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-05T07:52:48.498Z Has data issue: false hasContentIssue false

Impact of domain anisotropy on the inverse cascade in geostrophic turbulent convection

Published online by Cambridge University Press:  05 January 2018

Keith Julien*
Affiliation:
Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA
Edgar Knobloch
Affiliation:
Department of Physics, University of California, Berkeley, CA 94720, USA
Meredith Plumley
Affiliation:
Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA
*
Email address for correspondence: julien@colorado.edu

Abstract

The effect of domain anisotropy on the inverse cascade occurring within the geostrophic turbulence regime of rapidly rotating Rayleigh–Bénard convection is investigated. In periodic domains with square cross-section in the horizontal, a domain-filling dipole state is present. For rectangular periodic domains, a Kolmogorov-like flow parallel to the short side and consisting of a periodic array of alternating unidirectional jets with embedded vortices is observed, together with an underlying weak meandering transverse jet. Similar transitions occurring in weakly dissipative two-dimensional flows driven by externally imposed small-amplitude noise and in classical hydrostatic geostrophic turbulence are a consequence of inviscid conservation of energy and potential enstrophy, and can be understood using statistical mechanics considerations. Rotating Rayleigh–Bénard convection represents an important three-dimensional system with only one inviscid invariant which nonetheless exhibits large-scale structures driven by intrinsically generated fluctuations.

Type
JFM Rapids
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bouchet, F. & Simonnet, E. 2009 Random changes of flow topology in two-dimensional and geophysical turbulence. Phys. Rev. Lett. 102, 094504.10.1103/PhysRevLett.102.094504Google Scholar
Bouchet, F. & Venaille, A. 2012 Statistical mechanics of two-dimensional and geophysical flows. Phys. Rep. 515, 227295.Google Scholar
Favier, B., Silvers, L. J. & Proctor, M. R. E. 2014 Inverse cascade and symmetry breaking in rapidly rotating Boussinesq convection. Phys. Fluids 26, 096605.10.1063/1.4895131Google Scholar
Frishman, A., Laurie, J. & Falkovich, G. 2017 Jets or vortices – what flows are generated by an inverse turbulent cascade? Phys. Rev. Fluids 2, 032602(R).Google Scholar
Goluskin, D., Johnston, H., Flierl, G. R. & Spiegel, E. A. 2014 Convectively driven shear and decreased heat flux. J. Fluid Mech. 759, 360385.10.1017/jfm.2014.577Google Scholar
Guervilly, C. & Hughes, D. W. 2017 Jets and large-scale vortices in rotating Rayleigh–Bénard convection. Phys. Rev. Fluids 2 (11), 113503.Google Scholar
Guervilly, C., Hughes, D. W. & Jones, C. A. 2014 Large-scale vortices in rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 758, 407435.10.1017/jfm.2014.542Google Scholar
Julien, K. & Knobloch, E. 2007 Reduced models for fluid flows with strong constraints. J. Math. Phys. 48, 065405.10.1063/1.2741042Google Scholar
Julien, K., Rubio, A. M., Grooms, I. & Knobloch, E. 2012 Statistical and physical balances in low Rossby number Rayleigh–Bénard convection. Geophys. Astrophys. Fluid Dyn. 106, 392428.10.1080/03091929.2012.696109Google Scholar
Julien, K. & Watson, M. 2009 Efficient multi-dimensional solution of PDEs using Chebyshev spectral methods. J. Comput. Phys. 228, 14801503.Google Scholar
Nastrom, G. D. & Gage, K. S. 1985 A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci. 42, 950960.10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;22.0.CO;2>Google Scholar
Plumley, M., Julien, K., Marti, P. & Stellmach, S. 2016 The effects of Ekman pumping on quasi-geostrophic Rayleigh–Bénard convection. J. Fluid Mech. 803, 5171.10.1017/jfm.2016.452Google Scholar
Rubio, A. M., Julien, K., Knobloch, E. & Weiss, J. B. 2014 Upscale energy transfer in three-dimensional rapidly rotating turbulent convection. Phys. Rev. Lett. 112, 144501.Google Scholar
Smith, L. M. & Waleffe, F. 1999 Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence. Phys. Fluids 11, 16081622.Google Scholar
Smith, L. M. & Yakhot, V. 1994 Finite-size effects in forced two-dimensional turbulence. J. Fluid Mech. 274, 115138.Google Scholar
Sprague, M., Julien, K., Knobloch, E. & Werne, J. 2006 Numerical simulation of an asymptotically reduced system for rotationally constrained convection. J. Fluid Mech. 551, 141174.Google Scholar
Stellmach, S., Lischper, M., Julien, K., Vasil, G., Cheng, J. S., Ribeiro, A., King, E. M. & Aurnou, J. M. 2014 Approaching the asymptotic regime of rapidly rotating convection: boundary layers versus interior dynamics. Phys. Rev. Lett. 113, 254501.Google Scholar
Xia, H., Byrne, D., Falkovich, G. & Shats, M. 2011 Upscale energy transfer in thick turbulent fluid layers. Nat. Phys. 7, 321324.Google Scholar
Xia, H., Punzmann, H., Falkovich, G. & Shats, M. 2008 Turbulence condensate interaction in two dimensions. Phys. Rev. Lett. 101, 194504.10.1103/PhysRevLett.101.194504Google Scholar
Xia, H., Shats, M. & Falkovich, G. 2009 Spectrally condensed turbulence in thin layers. Phys. Fluids 21, 125101.10.1063/1.3275861Google Scholar