Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-02T02:33:47.361Z Has data issue: false hasContentIssue false

20 - An interdisciplinary review of climate change trends and uncertainties: lichen biodiversity, arctic–alpine ecosystems and habitat loss

from Section 4 - Conservation

Published online by Cambridge University Press:  16 May 2011

C. J. Ellis
Affiliation:
Royal Botanic Garden Edinburgh, UK
R. Yahr
Affiliation:
Royal Botanic Garden Edinburgh, UK
Trevor R. Hodkinson
Affiliation:
Trinity College, Dublin
Michael B. Jones
Affiliation:
Trinity College, Dublin
Stephen Waldren
Affiliation:
Trinity College, Dublin
John A. N. Parnell
Affiliation:
Trinity College, Dublin
Get access

Summary

Abstract

We provide an overview of trends and uncertainties emerging from the growing field of climate change and biodiversity research using lichens as a study group. Problems in understanding the implications of global change for lichens are relevant to other groups comprising subdominant species such as algae, mosses and liverworts. Ecological study of lichens represents a diverse range of the ascomycete fungi, which have adopted a strategy in symbiosis with an inhabitant autotrophic partner. In general lichens may be considered ‘stress tolerators’, although contrasting lichens encompass a range of life histories with respect to reproduction, dispersal and habitat specialisation. Lichens typically occupy microhabitats nested within a larger-scale habitat mosaic and are relatively little studied compared to vascular plants and animals. We examine two main themes: (1) the direct effect of climate warming on lichens with respect to arctic–alpine ecosystems; and (2) the indirect effect of climate change on lichens resulting from interaction with other environmental factors. Within this framework we discuss the current limits to bioclimatic modelling, the role of molecular ecology in climate change studies, species interactions, and opportunities for conservation in the face of climate change uncertainty. We draw on research from across geographic regions, with several focused examples referring to lichens in Britain and Ireland, which have the advantage of being among the best-explored lichen floras in the world.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahti, T. and Oksanen, J. (1990). Epigeic lichen communities of taiga and tundra regions. Vegetatio, 86, 39–70.CrossRefGoogle Scholar
Antoine, M. E. (2004). An ecophysiological approach to quantifying nitrogen fixation by Lobaria oregana. Bryologist, 107, 82–87.CrossRefGoogle Scholar
Antonovics, J. (1972). Population dynamics of the grass Anthoxanthum odoratum on a zinc mine. Journal of Ecology, 60, 351–367.CrossRefGoogle Scholar
Aptroot, A. and Herk, C. M. (2007). Further evidence of the effects of global warming on lichens, particularly those with Trentepohlia phycobionts. Environmental Pollution, 146, 293–298.CrossRefGoogle ScholarPubMed
Asplund, J. and Gauslaa, Y. (2008). Mollusc grazing limits growth and early development of the old forest lichen Lobaria pulmonaria in broadleaved deciduous forests. Oecologia, 155, 93–99.CrossRefGoogle ScholarPubMed
Baloch, E. and Grube, M. (2009). Pronounced genetic diversity in tropical epiphyllous lichen fungi. Molecular Ecology, 18, 2185–2197.CrossRefGoogle ScholarPubMed
Barnett, C., Hossell, J., Perry, M., Procter, C. and Hughes, G. (2006). A Handbook of Climate Trends Across Scotland. Edinburgh: Scotland and Northern Ireland Forum for Environmental Research.Google Scholar
Barrow, M. D., Costin, A. B. and Lake, P. (1968). Cyclical changes in an Australian Fjaeldmark community. Journal of Ecology, 56, 89–96.CrossRefGoogle Scholar
Berry, P. M., Dawson, T. P., Harrison, P. A. and Pearson, R. G. (2002). Modelling potential impacts of climate change on the bioclimatic envelope of species in Britain and Ireland. Global Ecology and Biogeography, 11, 453–462.CrossRefGoogle Scholar
Bertness, M. D. and Callaway, R. (1994). Positive interactions in communities. Trends in Ecology and Evolution, 9, 191–193.CrossRefGoogle ScholarPubMed
Blaha, J., Baloch, E. and Grube, M. (2006). High photobiont diversity in symbioses of the euryoecious lichen Lecanora rupicola (Lecanoraceae, Ascomycota). Biological Journal of the Linnean Society, 88, 283–293.CrossRefGoogle Scholar
Bradwell, T. and Armstrong, R. A. (2007). Growth rates of Rhizocarpon geographicum lichens: a review with new data from Iceland. Journal of Quaternary Science, 22, 311–320.CrossRefGoogle Scholar
Britton, A. J. and Fisher, J. M. (2006). Interactive effects of nitrogen deposition, fire and grazing on diversity and composition of low-alpine prostrateCalluna vulgaris heathland. Journal of Applied Ecology, 44, 125–135.Google Scholar
Brochmann, C. and Brysting, A. K. (2008). The Arctic: an evolutionary freezer?Plant Ecology and Diversity, 1, 181–195.CrossRefGoogle Scholar
Brooker, R. W. (2006). Plant–plant interactions and environmental change. New Phytologist, 171, 271–284.CrossRefGoogle ScholarPubMed
Brooker, R. W., Maestre, F. T., Callaway, R. M. et al. (2008). Facilitation in plant communities: the past, the present, and the future. Journal of Ecology, 96, 18–34.Google Scholar
Bubrick, P. (1988). Methods for cultivating lichens and isolated bionts. In Handbook of Lichenology, Vol. 3, ed. Galun, M.. Boca Raton, FL: CRC Press, pp. 127–138.Google Scholar
Burges, A. (1951) The ecology of the Cairngorms. III. The Empetrum–Vaccinium zone. Journal of Ecology, 39, 271–284.CrossRefGoogle Scholar
Burke, I. C., Reiners, W. A. and Olson, R. K. (1989). Topographic control of vegetation in a mountain big sagebrush steppe. Vegetatio, 84, 77–86.CrossRefGoogle Scholar
Buschbom, J. (2007). Migration between continents: geographical structure and long-distance gene flow in Porpidia flavicunda. Molecular Ecology, 16, 1835–1846.CrossRefGoogle ScholarPubMed
Buschbom, J. and Mueller, G. M. (2006). Testing ‘species pair’ hypotheses: evolutionary processes in the lichen-forming species complex Porpidia flavocoerulescens and Porpidia melinodes. Molecular Biology and Evolution, 23, 574–586.CrossRefGoogle Scholar
Callaway, R. M., Brooker, R. W., Choler, P. et al. (2002). Positive interactions among alpine plants increase with stress. Nature, 417, 844–848.CrossRefGoogle ScholarPubMed
Carlsson, B. Å. and Callaghan, T. V. (1991). Positive plant interactions in tundra vegetation and the importance of shelter. Journal of Ecology, 79, 973–983.CrossRefGoogle Scholar
Cassie, D. M. and Piercey-Normore, M. D. (2008). Dispersal in a sterile lichen-forming fungus, Thamnolia subuliformis (Ascomycotina: Icmadophilaceae). Botany, 86, 751–762.CrossRefGoogle Scholar
Chapin, F. S., Shaver, G. R., Giblin, A. E., Nadelhoffer, K. J. and Laundre, J. A. (1995). Responses of arctic tundra to experimental and observed changes in climate. Ecology, 76, 694–711.CrossRefGoogle Scholar
Christensen, J. H., Hewitson, B., Busuioc, A. et al. (2007). Regional climate projections. In Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Solomon, S., Qin, D., Manning, M. et al. Cambridge: Cambridge University Press, pp. 847–940.Google Scholar
Clayden, S. (1998). Thallus initiation and development in the lichen Rhizocarpon lecanorinum. New Phytologist, 139, 685–695.CrossRefGoogle Scholar
Comes, H. P. and Kadereit, J. W. (2003). Spatial and temporal patterns in the evolution of the flora of the European Alpine system. Taxon, 52, 451–462.CrossRefGoogle Scholar
Coppins, A. M. and Coppins, B. J. (2002). Indices of Ecological Continuity for Woodland Epiphytic Lichen Habitats in the British Isles. London: British Lichen Society.Google Scholar
Coppins, B. J., Hawksworth, D. L. and Rose, F. (2001). Lichens. In The Changing Wildlife of Great Britain and Ireland, ed. Hawksworth, D. L.. London: Taylor and Francis.Google Scholar
Cornelissen, J. H. C., Callaghan, T. V., Alatalo, J. M. et al. (2001). Global change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass?Journal of Ecology, 89, 984–994.CrossRefGoogle Scholar
Crabtree, D. and Ellis, C. J. (2010). Species interaction and response to wind-speed alter the impact of projected temperature change in a montane ecosystem. Journal of Vegetation Science, 21, 744–760.Google Scholar
Crespo, A., Carmen Molina, M., Blanco, O. et al. (2002). rDNA ITS and β-tubulin gene sequence analyses reveal two monophyletic groups within the cosmopolitan lichen Parmelia saxatilis. Mycological Research, 106, 788–795.CrossRefGoogle Scholar
Crittenden, P. D. (1989). Nitrogen relations of mat-forming lichens. In Nitrogen, Phosphorus and Sulphur Utilization by Fungi, ed. Boddy, L., Marchant, R. and Read, C. J.. Cambridge: Cambridge University Press.Google Scholar
Crittenden, P. D. (1991). Ecological significance of necromass production in mat-forming lichens. The Lichenologist, 23, 323–331.CrossRefGoogle Scholar
Culberson, C. F., Culberson, W. L. and Johnson, A. (1988). Gene flow in lichens. American Journal of Botany, 75, 1135–1139.CrossRefGoogle Scholar
Culberson, W. L., Culberson, C. F. and Johnson, A. (1993). Speciation in lichens of the Ramalina siliquosa complex (Ascomycotina, Ramalinaceae): gene flow and reproductive isolation. American Journal of Botany, 80, 1472–1481.CrossRefGoogle Scholar
Currie, D. J. and Paquin, V. (1987). Large-scale biogeographical patterns of species richness of trees. Nature, 329, 326–327.CrossRefGoogle Scholar
del Prado, R. and Sancho, L. G. (2007). Dew as a key factor for the distribution pattern of the lichen species Teloschistes lacunosus in the Tabernas Desert (Spain). Flora, 202, 417–428.CrossRefGoogle Scholar
Dettki, H., Klintberg, P. and Esseen, P. A. (2000). Are epiphytic lichens in young forests limited by local dispersal?Ecoscience, 7, 317–325.CrossRefGoogle Scholar
Dobson, F. (2005). Lichens: an Illustrated Guide to British and Irish Species. Slough: Richmond Publishing.Google Scholar
Eckert, C. G., Samis, K. E. and Lougheed, C. (2008). Genetic variation across species' geographical ranges: the central-marginal hypothesis. Molecular Ecology, 17, 1170–1188.CrossRefGoogle ScholarPubMed
Ellis, C. J. and Coppins, B. J. (2006). Contrasting functional traits maintain lichen epiphyte diversity in response to climate and autogenic succession. Journal of Biogeography, 33, 1643–1656.CrossRefGoogle Scholar
Ellis, C. J. and Coppins, B. J. (2007). Changing climate and historic-woodland structure interact to control species diversity of the ‘Lobarion’ epiphyte community in Scotland. Journal of Vegetation Science, 18, 725–734.CrossRefGoogle Scholar
Ellis, C. J. and Coppins, B. J. (2009). Quantifying the role of multiple landscape-scale drivers controlling epiphyte composition and richness in a conservation priority habitat (juniper scrub). Biological Conservation, 142, 1291–1301.CrossRefGoogle Scholar
Ellis, C. J., Crittenden, P. D. and Scrimgeour, C. M. (2004). Soil as a potential source of nitrogen for mat-forming lichens. Canadian Journal of Botany, 82, 145–149.CrossRefGoogle Scholar
Ellis, C. J., Crittenden, P. D., Scrimgeour, C. M. and Ashcroft, C. J. (2005). Translocation of 15N indicates nitrogen recycling in the mat-forming lichen Cladonia portentosa. New Phytologist, 168, 423–434.CrossRefGoogle ScholarPubMed
Ellis, C. J., Coppins, B. J., Dawson, T. P. and Seaward, M. R. D. (2007a). Response of British lichens to climate change scenarios: trends and uncertainties in the projected impact for contrasting biogeographic groups. Biological Conservation, 140, 217–235.CrossRefGoogle Scholar
Ellis, C. J., Coppins, B. J. and Dawson, T. P. (2007b). Predicted response of the lichen epiphyte Lecanora populicola to climate change scenarios in a clean-air region of northern Britain. Biological Conservation, 135, 396–404.CrossRefGoogle Scholar
Ellis, C. J., Yahr, R. and Coppins, B. J. (2009). Local extent of old-growth woodland modifies epiphyte response to climate change. Journal of Biogeography, 36, 302–313.CrossRefGoogle Scholar
Ellstrand, N. C. and Elam, D. R. (1993). Population genetic consequences of small population size: implications for plant conservation. Annual Review Ecology and Systematics, 24, 217–242.CrossRefGoogle Scholar
Ellyson, W. J. T. and Sillett, S. C. (2003). Epiphyte communities on sitka spruce in an old-growth redwood forest. Bryologist, 106, 197–211.CrossRefGoogle Scholar
Fahselt, D. (1989). Enzyme polymorphism in sexual and asexual umbilicate lichens from Sverdrup Pass, Ellesmere Island, Canada. Lichenologist, 21, 279–285.CrossRefGoogle Scholar
Fahselt, D., Maycock, P. and Wong, P. Y. (1989). Reproductive modes of lichens in stressful environments in central Ellesmere Island, Canadian high arctic. The Lichenologist, 21, 343–353.CrossRefGoogle Scholar
Franks, S. J., Sim, S. and Weis, A. E. (2007). Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proceedings of the National Academy of Sciences of the USA, 104, 1278–1282.CrossRefGoogle ScholarPubMed
Fryday, A. M. (2001a). Phytosociology of terricolous lichen vegetation in the Cairngorm Mountains, Scotland. The Lichenologist, 33, 331–351.CrossRefGoogle Scholar
Fryday, A. M. (2001b). Effects of grazing animals on upland/montane lichen vegetation in Great Britain. Botanical Journal of Scotland, 53, 1–19.CrossRefGoogle Scholar
Galloway, D. J. and Aptroot, A. (1995). Bipolar lichens: a review. Cryptogamic Botany, 5, 184–191.Google Scholar
Gargas, A., DePriest, P. T., Grube, M. and Tehler, A. (1995). Multiple origins of lichen symbiosis in fungi suggested by SSU rDNA phylogeny. Science, 268, 1492–1495.CrossRefGoogle ScholarPubMed
Gassmann, A. and Ott, S. (2000). Growth strategy and the gradual symbiotic interactions of the lichen Ochrolechia frigida. Plant Biology, 2, 368–378.CrossRefGoogle Scholar
Gauslaa, Y. (2005). Lichen palatability depends on investments in herbivore defence. Oecologia, 143, 94–105.CrossRefGoogle ScholarPubMed
Gauslaa, Y. (2008). Mollusc grazing may constrain the ecological niche of the old forest lichen Pseudocyphellaria crocata. Plant Biology, 10, 711–717.CrossRefGoogle ScholarPubMed
Geiser, L. H. and Neitlich, P. N. (2007). Air pollution and climate gradients in western Oregon and Washington indicated by epiphytic macrolichens. Environmental Pollution, 145, 203–218.CrossRefGoogle ScholarPubMed
Geml, J., Kauff, F., Brochmann, C. and Taylor, D. L. (2010). Surviving climate changes: high genetic diversity and transoceanic gene flow in two arctic-alpine lichens, Flavocetraria cucullata and F. nivalis (Parmeliaceae, Ascomycota). Journal of Biogeography, 37, 1529–1542.Google Scholar
Gignac, L. D. and Dale, M. R. T. (2005). Effects of fragment size and habitat heterogeneity on cryptogam diversity in the low-boreal forest of western Canada. Bryologist, 108, 50–66.CrossRefGoogle Scholar
Gilbert, O. L. and Fox, B. W. (1985). Lichens of high ground in the Cairngorm Mountains, Scotland. The Lichenologist, 17, 51–66.CrossRefGoogle Scholar
Grabherr, G., Gottfried, M. and Pauli, H. (1994). Climate effects on mountain plants. Nature, 369, 448.CrossRefGoogle ScholarPubMed
Graglia, E., Jonasson, S., Michelsen, A. et al. (2001). Effects of environmental perturbations on abundance of subarctic plants after three, seven and ten years of treatments. Ecography, 24, 5–12.CrossRefGoogle Scholar
Green, T. G. A. and Lange, O. L. (1991). Ecophysiological adaptations of the lichen genera Pseudocyphellaria and Sticta to south temperate rainforests. The Lichenologist, 23, 267–282.CrossRefGoogle Scholar
Grime, J. P. (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist, 111, 1169–1194.CrossRefGoogle Scholar
Grube, M. and Winka, K. (2002). Progress in understanding the evolution and classification of lichenized ascomycetes. Mycologist, 16, 67–76.CrossRefGoogle Scholar
Gu, W. D., Kuusinen, M., Konttinen, T. and Hanski, I. (2001). Spatial pattern in the occurrence of the lichen Lobaria pulmonaria in managed and virgin boreal forests. Ecography, 24, 139–150.CrossRefGoogle Scholar
Gueidan, C., Roux, C. and Lutzoni, F. (2007). Using a multigene phylogenetic analysis to assess generic delineation and character evolution in Verrucariaceae (Verrucariales, Ascomycota). Mycological Research, 111, 1145–1168.CrossRefGoogle Scholar
Gueidan, C., Ruibal Villaseñor, C., de Hoog et al. (2008). A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages. Studies in Mycology, 61, 111–119.CrossRefGoogle ScholarPubMed
Guisan, A. and Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 993–1009.CrossRefGoogle Scholar
Hageman, C. and Fahselt, D. (1990). Multiple enzyme forms as indicators of functional sexuality in the lichen Umbilicaria vellea. The Bryologist, 93, 389–394.CrossRefGoogle Scholar
Hale, M. E. (1983). The Biology of Lichens. London: Edward Arnold.Google Scholar
Hamann, A. and Wang, T. (2006). Potential effects of climate change on ecosystem and tree species distribution in British Columbia. Ecology, 87, 2773–2786.CrossRefGoogle ScholarPubMed
Hampe, A. (2004). Bioclimatic envelope models: what they detect and what they hide. Global Ecology and Biogeography, 13, 469–476.CrossRefGoogle Scholar
Hamrick, J. L. and Godt, M. J. W. (1996). Effects of life history traits on genetic diversity in plant species. Philosophical Transactions of the Royal Society of London B, 351, 1291–1298.CrossRefGoogle Scholar
Hamrick, J. L., Milton, J. B. and Linhart, Y. B. (1981). Levels of Genetic Variation in Trees: Influence of Life History Characteristics. Gen. Tech. Rep. PSW-GTR-48. Berkeley, CA: Pacific Southwest Forest and Range Exp. Stn, Forest Service, U.S. Department of Agriculture, pp. 35–41.Google Scholar
Hanski, I. (1999). Metapopulation Ecology. Oxford: Oxford University Press.Google Scholar
Hawksworth, D. L. and Rose, F. (1970). Qualitative scale for estimating sulphur dioxide air pollution in England and Wales using epiphytic lichens. Nature, 227, 145–148.CrossRefGoogle ScholarPubMed
Heikkinen, R. K., Luoto, M., Araújo, M. B. et al. (2006). Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography, 30, 751–777.CrossRefGoogle Scholar
Hestmark, G. (1992). Sex, size, competition and escape: strategies of reproduction and dispersal in Lasallia pustulata (Umbilicariaceae, Ascomycetes). Oecologia, 92, 305–312.CrossRefGoogle Scholar
Hilmo, O. and Såstad, S. M. (2001). Colonization of old-forest lichens in a young and an old boreal Picea abies forest: an experimental approach. Biological Conservation, 102, 251–259.CrossRefGoogle Scholar
Högberg, N., Kroken, S., Thor, G. and Taylor, J. W. (2002). Reproductive mode and genetic variation suggest a North American origin of European Letharia vulpina. Molecular Ecology, 11, 1191–1196.CrossRefGoogle ScholarPubMed
Holderegger, R., Herrmann, D., Poncet, B. et al. (2008). Land ahead: using genome scans to identify molecular markers of adaptive radiation. Plant Ecology and Diversity, 1, 273–283.CrossRefGoogle Scholar
Hollister, R. D., Webber, P. J. and Bay, C. (2005). Plant response to temperature in northern Alaska: implications for predicting vegetation change. Ecology, 86, 1562–1570.CrossRefGoogle Scholar
Honegger, R. (1991). Functional aspects of the lichen symbiosis. Annual Review of Plant Physiology and Plant Molecular Biology, 42, 553–578.CrossRefGoogle Scholar
Honegger, R. and Zippler, U. (2007). Mating systems in representatives of Parmeliaceae, Ramalinaceae and Physciaceae. Mycological Research, 111, 424–432.CrossRefGoogle ScholarPubMed
Honegger, R., Zippler, U., Gansner, H. and Scherrer, S. (2004). Mating systems in the genus Xanthoria (lichen-forming ascomycetes). Mycological Research, 108, 480–488.CrossRefGoogle Scholar
James, P. W., Hawksworth, D. L. and Rose, F. (1977). Lichen communities in the British Isles: a preliminary conspectus. In Lichen Ecology, ed. Seaward, M. R. D.. London: Academic Press.Google Scholar
Jaramillo, C., Rueda, M. J. and Mora, G. (2006). Cenozoic plant diversity in the Neotropics. Science, 311, 1893–1896.CrossRefGoogle ScholarPubMed
Johansson, P. and Ehrlén, J. (2003). Influence of habitat quantity, quality and isolation on the distribution and abundance of two epiphytic lichens. Journal of Ecology, 91, 213–221.Google Scholar
Jovan, S. and McCune, B. (2005). Air-quality bioindication in the Greater Central Valley of California, with epiphytic macrolichen communities. Ecological Applications, 15, 1712–1726.CrossRefGoogle Scholar
Kalmar, A. and Currie, D. J. (2006). A global model of island biogeography. Global Ecology and Biogeography, 15, 72–81.CrossRefGoogle Scholar
Kappen, L. (1990). Usnea sphacelata, its role in the vegetation and its possible growth capacity on Bailey Peninsula, Wilkes Land. Bibliotheca Lichenologica, 38, 277–289.Google Scholar
Kappen, L. (2000). Some aspects of the general success of lichens in Antarctica. Antarctic Science, 12, 314–324.CrossRefGoogle Scholar
King, R. B. (1960). Vegetation destruction in the sub-alpine and alpine zones of the Cairngorm Mountains. Scottish Geographical Magazine, 87, 103–115.CrossRefGoogle Scholar
Klanderud, K. (2005). Climate change effects on species interactions in an alpine plant community. Journal of Ecology, 93, 127–137.CrossRefGoogle Scholar
Klanderud, K. (2008). Species-specific responses of an alpine plant community under simulated environmental change. Journal of Vegetation Science, 19, 363–372.CrossRefGoogle Scholar
Klanderud, K. and Birks, H. J. B. (2003). Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. The Holocene, 13, 1–6.CrossRefGoogle Scholar
Klanderud, K. and Totland, , Ø. (2005). Simulated climate change altered dominance hierarchies and diversity of an alpine biodiversity hotspot. Ecology, 86, 2047–2054.CrossRefGoogle Scholar
Kranner, I., Beckett, R., Hochman, A. and Nash, T. H. (2008). Desiccation-tolerance in lichens: a review. The Bryologist, 111, 576–593.CrossRefGoogle Scholar
Kroken, S. and Taylor, J. W. (2001). A gene genealogical approach to recognize phylogenetic species boundaries in the lichenized fungus Letharia. Mycologia, 93, 38–53.CrossRefGoogle Scholar
Kullman, L. (2002). Rapid recent range-margin rise of tree and shrub species in the Swedish Sacndes. Journal of Ecology, 90, 68–77.CrossRefGoogle Scholar
Kytöviita, M. M. and Crittenden, P. D. (2007). Growth and nitrogen relations in the mat-forming lichens Stereocaulon paschale and Cladonia stellaris. Annals of Botany, 100, 1537–1545.CrossRefGoogle ScholarPubMed
LaGreca, S. (1999). A phylogenetic evaluation of the Ramalina americana chemotype complex (Lichenized Ascomycota, Ramalinaceae) based on rDNA ITS sequence data. The Bryologist, 102, 602–618.CrossRefGoogle Scholar
Lange, O. L. and Green, T. G. A. (2005). Lichens show that fungi can acclimate their respiration to seasonal changes in temperature. Oecologia, 142, 11–19.CrossRefGoogle ScholarPubMed
Lange, O. L., Kilian, E. and Ziegler, H. (1986). Water vapour uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia, 71, 104–110.CrossRefGoogle Scholar
Lange, O. L., Büdel, B., Meyer, A. and Kilian, E. (1993). Further evidence that activation of net photosynthesis by dry cyanobacterial lichens requires liquid water. The Lichenologist, 25, 175–189.CrossRefGoogle Scholar
Lange, O. L., Green, T. G. A., Melzer, B., Meyer, A. and Zellner, H. (2006). Water relations and CO2 exchange of the terrestrial lichen Teloschistes capensis in the Namib fog desert: measurements during two seasons in the field and under controlled conditions. Flora, 201, 268–280.CrossRefGoogle Scholar
Lange, O. L., Green, T. G. A., Meyer, A. and Zellner, H. (2007). Water relations and carbon dioxide exchange of epiphytic lichens in the Namib fog desert. Flora, 202, 479–487.CrossRefGoogle Scholar
Lättman, H., Lindblom, L., Mattsson, J. E. et al. (2009). Estimating the dispersal capacity of the rare lichenCliostomum corrugatum. Biological Conservation, 142, 1870–1878.CrossRefGoogle Scholar
Leimu, R., Mutikainen, P., Koricheva, J. and Fischer, M. (2006). How general are positive relationships between plant population size, fitness and genetic variation?Journal of Ecology, 94, 942–952.CrossRefGoogle Scholar
Lenoir, J., Gégout, J. C., Marquet, P. A., Ruffray, P. and Brisse, H. (2008). A significant upward shift in plant species optimum elevation during the 20th century. Science, 320, 1768–1771.CrossRefGoogle ScholarPubMed
Lesica, P. and McCune, B. (2004). Decline of arctic–alpine plants at the southern margin of their range following a decade of climatic warming. Journal of Vegetation Science, 15, 679–690.CrossRefGoogle Scholar
Löbel, S., Snäll, T. and Rydin, H. (2006a). Metapopulation processes in epiphytes inferred from patterns of regional distribution and local abundance in fragmented landscapes. Journal of Ecology, 94, 856–868.CrossRefGoogle Scholar
Löbel, S., Snäll, T. and Rydin, H. (2006b). Species richness patterns and metapopulation processes: evidence from epiphyte communities in boreo-nemoral forests. Ecography, 29, 169–182.CrossRefGoogle Scholar
Longton, R. E. (1988). Biology of Polar Bryophytes and Lichens. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Lutzoni, F., Pagel, M. and Reeb, V. (2001). Major fungal lineages are derived from lichen symbiotic ancestors. Nature, 411, 937–940.CrossRefGoogle ScholarPubMed
MacDonald, G. M., Bennett, K. D., Jackson, S. T. et al. (2008). Impacts of climate change on species, populations and communities: palaeobiogeographical insights and frontiers. Progress in Physical Geography, 32, 139–172.CrossRefGoogle Scholar
MacFarlane, J. D. and Kershaw, K. A. (1977). Physiological–environmental interactions in lichens, IV. Seasonal changes in the nitrogenase activity of Peltigera canina var. praetextata and P. canina var. rufescens. New Phytologist, 79, 403–408.CrossRefGoogle Scholar
Maestre, F. T., Callaway, R. M., Valladares, F. and Lortie, C. J. (2009). Refining the stress-gradient hypothesis for competition and facilitation in plant communities. Journal of Ecology, 97, 199–205.CrossRefGoogle Scholar
McCune, B. (2006). Non-parametric habitat models with automatic interactions. Journal of Vegetation Science, 17, 819–830.CrossRefGoogle Scholar
Metcalfe, G. (1950). The ecology of the Cairngorms, part II. The mountain Callunetum. Journal of Ecology, 38, 46–74.CrossRefGoogle Scholar
,Millennium Ecosystem Assessment (2005). Ecosystems and Human Well- being: Biodiversity Synthesis. Washington, DC: World Resources Institute.Google Scholar
Morin, X. and Thuiller, W. (2009). Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology, 90, 1301–1313.CrossRefGoogle ScholarPubMed
Muñoz, J., Felicisimo, A. M., Cabezas, F., Burgaz, A. R. and Martinez, I. (2004). Wind as a long-distance dispersal mechanism in the Southern Hemisphere. Science, 304, 1144–1147.CrossRefGoogle Scholar
Murtagh, G. J., Dyer, P. S. and Crittenden, P. D. (2000). Sex and the single lichen. Nature, 404, 564.CrossRefGoogle ScholarPubMed
Murtagh, G. J., Dyer, P. S., Furneaux, P. A. and Crittenden, P. D. (2002). Molecular and physiological diversity in the bipolar lichen-forming fungus Xanthoria elegans. Mycological Research, 106, 1277–1286.CrossRefGoogle Scholar
Myllys, L., Lohtander, K. and Tehler, A. (2001). Beta-tubulin, ITS and group I intron sequences challenge the species pair concept in Physcia aipolia and P. caesia. Mycologia, 93, 335–343.CrossRefGoogle Scholar
Myllys, L., Stenroos, S. and Thell, A. (2003). Phylogeny of bipolar Cladonia arbuscula and C. mitis (Lecanorales, Eusacomycetes). Molecular Phylogenetics and Evolution, 27, 58–69.CrossRefGoogle Scholar
Nakicenovic, N. (2000). Special Report on Emissions Scenarios. IPCC III. Cambridge: Cambridge University Press.Google Scholar
Nelsen, M. P. and Gargas, A. (2008). Dissociation and horizontal transmission of co-dispersed lichen symbionts in the genus Lepraria (Lecanorales: Stereocaulaceae). New Phytologist, 177, 264–275.Google Scholar
Neubert, M. G. and Caswell, H. (2000). Dispersal and demography: calculation and sensitivity analysis of invasion speed for structured populations. Ecology, 81, 1613–1628.CrossRefGoogle Scholar
O'Brien, H., Miadlikowska, J. and Lutzoni, F. (2005). Assessing host specialization in symbiotic Cyanobacteria associated with four closely related species of the lichen fungus Peltigera. European Journal of Phycology, 40, 363–378.CrossRefGoogle Scholar
Ochyra, R., Lewis Smith, R. I. and Bednarck-Ochyra, H. (2008). Illustrated Moss Flora of Antarctica. Cambridge: Cambridge University Press.Google Scholar
Öckinger, E., Niklasson, M. and Nilsson, S. G. (2005). Is local distribution of the epiphytic lichen Lobaria pulmonaria limited by dispersal capacity of habitat quality?Biodiversity and Conservation, 14, 759–773.CrossRefGoogle Scholar
Ott, S. (1987). Reproductive strategies in lichens. Bibliotheca Lichenologica, 25, 81–93.Google Scholar
Øvstedal, D. O. and Lewis Smith, R. I. (2001). Lichens of Antarctica and South Georgia. Cambridge: Cambridge University Press.Google Scholar
Palice, Z. and Printzen, C. (2004). Genetic variability in tropical and temperate populations of Trapeliopsis glaucolepidea: Evidence against long-range dispersal in a lichen with disjunct distribution. Mycotaxon, 90, 43–54.Google Scholar
Palmqvist, K. (2000). Carbon economy in lichens. New Phytologist, 148, 11–36.CrossRefGoogle Scholar
Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637–669.CrossRefGoogle Scholar
Piercey-Normore, M. D. (2006). The lichen-forming ascomycete Evernia mesomorpha associates with multiple genotypes of Trebouxia jamesii. New Phytologist, 169, 331–344.CrossRefGoogle ScholarPubMed
Piercey-Normore, M. D. and DePriest, P. T. (2001). Algal switching among lichen symbioses. American Journal of Botany, 88, 1490–1498.CrossRefGoogle ScholarPubMed
Poore, M. E. D. and McVean, D. N. (1957). A new approach to Scottish mountain vegetation. Journal of Ecology, 45, 401–439.CrossRefGoogle Scholar
Press, M. C., Potter, J. A., Burke, M. J. W., Callaghan, T. V. and Lee, J. A. (1998). Responses of a subarctic dwarf shrub community to simulated environmental change. Journal of Ecology, 86, 315–327.CrossRefGoogle Scholar
Printzen, C., Ekman, S. and Tønsberg, T. (2003). Phylogeography of Cavernularia hultenii: evidence of slow genetic drift in a widely disjunct lichen. Molecular Ecology, 12, 1473–1486.CrossRefGoogle Scholar
Reed, D. H. and Frankham, R. (2003). Correlation between fitness and genetic diversity. Conservation Biology, 17, 230–237.CrossRefGoogle Scholar
Rehfeldt, G. E., Crookston, N. L., Warwell, M. V. and Evans, J. S. (2006). Empirical analysis of plant community relationships for the western United States. International Journal of Plant Geography, 167, 1123–1150.Google Scholar
Rieseberg, L. H. and Burke, J. M. (2001). The biological reality of species: gene flow, selection, and collective evolution. Taxon, 50, 47–67.CrossRefGoogle Scholar
Robinson, C. H., Wookey, P. A., Lee, J. A., Callaghan, T. V. and Press, M. C. (1998). Plant community responses to simulated environmental change at a High Arctic polar semi-desert. Ecology, 79, 856–866.CrossRefGoogle Scholar
Rodwell, J. S., ed. (1991). British Plant Communities, Volume 2. Mires and Heaths. Cambridge: Cambridge University Press.
Romeike, J., Friedl, T., Helms, G. and Ott, S. (2002). Genetic diversity of algal and fungal partners in four species of Umbilicaria (lichenized ascomycetes) along a transect of the Antarctic peninsula. Molecular Biology and Evolution, 19, 1209–1217.CrossRefGoogle ScholarPubMed
Rose, C. I. and Hawksworth, D. L. (1981). Lichen recolonization in London's cleaner air. Nature, 289, 289–292.CrossRefGoogle Scholar
Rose, F. (1988). Phytogeographical and ecological aspects of Lobarion communities in Europe. Botanical Journal of the Linnean Society, 96, 69–79.CrossRefGoogle Scholar
Rosenzweig, C., Karoly, D., Vicarelli, M. et al. (2008). Attributing physical and biological impacts to anthropogenic climate change. Nature, 453, 353–357.CrossRefGoogle ScholarPubMed
Sanders, W. B. (2001). Lichens: the interface between mycology and plant morphology. Bioscience, 51, 1025–1035.CrossRefGoogle Scholar
Schaper, T. and Ott, S. (2003). Photobiont selectivity and interspecific interactions in lichen communities. I. Culture experiments with the mycobiont Fulgensia bracteata. Plant Biology, 5, 441–450.CrossRefGoogle Scholar
Scherrer, S., Zippler, U. and Honegger, R. (2005). Characterisation of the mating-type locus in the genus Xanthoria (lichen-forming ascomycetes, Lecanoromycetes). Fungal Genetics and Biology, 42, 976–988.CrossRefGoogle Scholar
Schofield, S. C., Campbell, D. A., Funk, C. and MacKenzie, T. D. B. (2003). Changes in macromolecular allocation in nondividing algal symbionts allow for photosynthetic acclimation in the lichen Lobaria pulmonaria. New Phytologist, 159, 709–718.CrossRefGoogle Scholar
Schroeter, B., Green, T. G. A., Kappen, L. and Seppelt, R. D. (1994). Carbon dioxide exchange at subzero temperatures: field measurements on Umbilicaria aprina in Antarctica. Cryptogamic Botany, 4, 233–241.Google Scholar
Seaward, M. R. D. (1998). Time-space analysis of the British lichen flora, with particular reference to air quality surveys. Folia Cryptogamica Estonica, 32, 85–96.Google Scholar
Seymour, F. A., Crittenden, P. D., Dickinson, M. J. et al. (2005a). Breeding systems in the lichen-forming fungal genus Cladonia. Fungal Genetics and Biology, 42, 554–563.CrossRefGoogle ScholarPubMed
Seymour, F. A., Crittenden, P. D. and Dyer, P. S. (2005b). Sex in the extremes: lichen-forming fungi. Mycologist, 19, 51–58.CrossRefGoogle Scholar
Seymour, F. A., Crittenden, P. D., Wirtz, N. et al. (2007). Phylogenetic and morphological analysis of Antarctic lichen-forming Usnea species in the group Neuropogon. Antarctic Science, 19, 71–82.CrossRefGoogle Scholar
Shaver, G. R. and Jonasson, S. (1999). Response of Arctic ecosystems to climate change: results of long-term field experiments in Sweden and Alaska. Polar Research, 18, 245–252.CrossRefGoogle Scholar
Sillett, S. C., McCune, B., Peck, J. E., Rambo, T. R. and Ruchty, A. (2000). Dispersal limitations of epiphytic lichens result in species dependent on old-growth forests. Ecological Applications, 10, 789–799.CrossRefGoogle Scholar
Slatkin, M. (1976). The rate of spread of an advantageous allele in a subdivided population. In Population Genetics and Ecology, ed. Karlin, S. and Nevo, E.. New York, NY: Academic Press, pp. 767–780.Google Scholar
Smith, C. W., Aptroot, A., Coppins, B. J. et al., eds. (2009). The Lichens of Great Britain and Ireland. Slough: Richmond Publishing Co.Google Scholar
Snäll, T., Pennanen, J., Kivistö, L. and Hanski, I. (2005). Modelling epiphyte metapopulation dynamics in a dynamic forest landscape. Oikos, 109, 209–222.CrossRefGoogle Scholar
Solhaug, K. A., Gauslaa, Y., Nybakken, L. and Bilger, W. (2003). UV-induction of sun-screening pigments in lichens. New Phytologist, 158, 91–100.CrossRefGoogle Scholar
Sonesson, M., Schipperges, B. and Carlsson, B. Å. (1992). Seasonal patterns of photosynthesis in alpine and subalpine populations of the lichen Nephroma arcticum. Oikos, 65, 3–12.CrossRefGoogle Scholar
Stace, C. (1997). New Flora of the British Isles, 2nd edn. Cambridge: Cambridge University Press.Google Scholar
Stevens, C. J., Dise, N. B., Mountford, J. O. and Gowing, D. J. (2004). Impact of nitrogen deposition on the species richness of grasslands. Science, 303, 1876–1879.CrossRefGoogle ScholarPubMed
Sturm, M., Racine, C. and Tape, K. (2001). Increasing shrub abundance in the Arctic. Nature, 411, 546.CrossRefGoogle ScholarPubMed
Suttle, K. B., Thomsen, M. A. and Power, M. E. (2007). Species interactions reverse grassland responses to changing climate. Science, 315, 640–642.CrossRefGoogle ScholarPubMed
Taylor, T. N., Hass, H., Remy, W. and Kerp, H. (1995). The oldest fossil lichen. Nature, 378, 244.CrossRefGoogle Scholar
Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T. and Prentice, I. C. (2005). Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences of the USA, 102, 8245–8250.CrossRefGoogle Scholar
Tormo, R., Recio, D., Silva, I. and Muñoz, A. F. (2001). A quantitative investigation of airborne algae and lichen soredia obtained from pollen traps in south-west Spain. European Journal of Phycology, 36, 385–390.CrossRefGoogle Scholar
Travis, J. M. J. (2003). Climate change and habitat destruction: a deadly anthropogenic cocktail. Proceedings of the Royal Society of London B, 270, 467–473.CrossRefGoogle ScholarPubMed
Tribsch, A. and Stuessy, T. F. (2003). Evolution and phylogeography of arctic and alpine plants in Europe: introduction. Taxon, 52, 415–416.CrossRefGoogle Scholar
Trivedi, M. R., Morecroft, M. D., Berry, P. M. and Dawson, T. P. (2008a). Potential effects of climate change on plant communities in three montane nature reserves in Scotland, UK. Biological Conservation, 141, 1665–1675.CrossRefGoogle Scholar
Trivedi, M. R., Berry, P. M., Morecroft, M. D. and Dawson, T. P. (2008b). Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. Global Change Biology, 14, 1089–1103.CrossRefGoogle Scholar
Dobben, H. F., Wolterbeek, H. T., Wamelink, G. W. W. and Braak, C. J. F. (2001). Relationship between epiphytic lichens, trace elements and gaseous atmospheric pollutants. Environmental Pollution, 112, 163–169.CrossRefGoogle ScholarPubMed
Herk, C. M. (1999). Mapping of ammonia pollution with epiphytic lichens in the Netherlands. The Lichenologist, 31, 9–20.Google Scholar
Herk, C. M., Aptroot, A. and van Dobben, H. F. (2002). Long-term monitoring in the Netherlands suggests that lichens respond to global warming. The Lichenologist, 34, 141–154.CrossRefGoogle Scholar
Herk, C. M., Mathijssen, E. A. M. and Zwart, D. (2003). Long distance nitrogen air pollution effects on lichens in Europe. The Lichenologist, 35, 347–359.Google Scholar
Walker, J. (1985). The lichen genus Usnea subgenusNeuropogon. Bulletin of the British Museum of Natural History, 13, 1–130.Google Scholar
Walker, M. D., Wahren, C. H., Hollister, R. D. et al. (2006). Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the USA, 103, 1342–1346.CrossRefGoogle ScholarPubMed
Walther, G. R., Post, E., Convey, P. et al. (2002). Ecological responses to recent climate change. Nature, 416, 389–395.CrossRefGoogle ScholarPubMed
Walser, J. C. (2004). Molecular evidence for limited dispersal of vegetative propagules in the epiphytic lichen Lobaria pulmonaria. American Journal of Botany, 91, 1273–1276.CrossRefGoogle ScholarPubMed
Walser, J. C., Zoller, S., Buchler, U. and Scheidegger, C. (2001). Species-specific detection of Lobaria pulmonaria (lichenized ascomycete) diaspores in litter samples trapped in snow cover. Molecular Ecology, 10, 2129–2138.CrossRefGoogle ScholarPubMed
Walser, J. C., Holderegger, R., Gugerli, F., Hoebee, S. and Scheidegger, C. (2005). Microsatellites reveal regional population differentiation and isolation in Lobaria pulmonaria, an epiphytic lichen. Molecular Ecology, 14, 457–467.CrossRefGoogle ScholarPubMed
Walton, J. (1922). A Spitsbergen salt marsh: with observations on the ecological phenomena attendant on the emergence of land from the sea. Journal of Ecology, 19, 109–121.CrossRefGoogle Scholar
Watt, A. S. (1947). Pattern and process in the plant community. Journal of Ecology, 35, 1–22.CrossRefGoogle Scholar
Watt, A. S. and Jones, E. W. (1948). The ecology of the Cairngorms. I. The environment and altitudinal zonation of the vegetation. Journal of Ecology, 36, 283–304.CrossRefGoogle Scholar
Wedin, M., Döring, H. and Gilenstam, G. (2004). Saprotrophy and lichenization as options for the same fungal species on different substrata: environmental plasticity and fungal lifestyles in the Stictis-Conotrema complex. New Phytologist, 164, 459–465.CrossRefGoogle Scholar
Werth, S. (2010). Population genetics of lichen-forming fungi: a review. The Lichenologist, 42, 499–520.CrossRefGoogle Scholar
Werth, S. and Sork, V. L. (2008). Local genetic structure in a North American epiphytic lichen, Ramalina menziesii (Ramalinaceae). American Journal of Botany 95, 568–576.CrossRefGoogle Scholar
Werth, S., Wagner, H. H., Gugerli, F. et al. (2006). Quantifying dispersal and establishment limitation in a population of an epiphytic lichen. Ecology, 87, 2037–2046.CrossRefGoogle Scholar
Werth, S., Gugerli, F., Holderegger, R. et al. (2007). Landscape-level gene flow in Lobaria pulmonaria, an epiphytic lichen. Molecular Ecology, 16, 2807–2815.CrossRefGoogle ScholarPubMed
Willis, K. J., Kleczkowski, A., New, M. and Whittaker, R. J. (2007). Testing the impact of climatic variability on European plant diversity: 320,000 years of water-energy dynamics and its long-term influence on plant taxonomic richness. Ecology Letters, 10, 673–679.CrossRefGoogle Scholar
Wirtz, N., Lumbsch, H. T., Green, T. G. A. et al. (2003). Lichen fungi have low cyanobiont selectivity in maritime Antarctica. New Phytologist, 160, 177–183.CrossRefGoogle Scholar
Wirtz, N., Printzen, C., Sancho, L. G. and Lumbsch, H. T. (2006). The phylogeny and classification of Neuropogon and Usnea (Parmeliaceae, Ascomycota) revisited. Taxon, 55, 367–376.CrossRefGoogle Scholar
Woodin, S. J. (1989). Environmental effects of air pollution in Britain. Journal of Applied Ecology, 26, 749–761.CrossRefGoogle Scholar
Woodward, F. I. and Beerling, D. J. (1997). The dynamics of vegetation change: health warnings for equilibrium ‘dodo’ models. Global Ecology and Biogeography Letters, 6, 413–418.CrossRefGoogle Scholar
Yahr, R., Vilgalys, R. and DePreist, P. T. (2006). Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of the lichen symbiosis. New Phytologist, 171, 847–860.CrossRefGoogle ScholarPubMed
Zoller, S., Lutzoni, F. and Scheidegger, C. (1999). Genetic variation within and among populations of the threatened lichen Lobaria pulmonaria in Switzerland and implications for its conservation. Molecular Ecology, 8, 2049–2059.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×