Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-10T09:33:15.438Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

Ram B. Gupta
Affiliation:
Auburn University, Alabama
Ayhan Demirbas
Affiliation:
Sirnak University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbaslou, M., Reza, M., Soltan Mohammadzadeh, J. S., Dalai, A. K. 2009. Review on Fischer-Tropsch synthesis in supercritical media. Fuel Process Technol 90(7–8):849–856.CrossRefGoogle Scholar
,ACE. 2009. Petroleum. Available from: http://www.speedace.info/petroleum.htm. Accessed March 11, 2009.
Achten, W. M. J., Verchot, L., Franken, Y. J., et al. 2008. Jatropha bio-diesel production and use. Biomass Bioenerg 32(12):1063–1084.CrossRefGoogle Scholar
Adjaye, J. D., Sharma, R. K., Bakhshi, N. N. 1992. Characterization and stability analysis of wood-derived bio-oil. Fuel Process Technol 31(3):241–256.CrossRefGoogle Scholar
Agbogbo, F. K., Coward-Kelly, G. 2008. Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol Lett 30(9):1515–1524.CrossRefGoogle ScholarPubMed
Agbogbo, F. K., Haagensen, F. D., Milam, D., Wenger, K. S. 2008. Fermentation of acid-pretreated corn stover to ethanol without detoxification using Pichia stipitis. Appl Biochem Biotechnol 145(1–3):53–58.CrossRefGoogle ScholarPubMed
Agranet, . 2009. F.O. Licht's World Ethanol & Biofuels Report. Available from: http://www.agra-net.com/portal2/home.jsp?template=productpage&pubid=ag072.
Aitani, A. M. 2004. Oil refining and products. In: Cleveland, C. J., editor. Encyclopedia of Energy. New York, NY, Elsevier, pp. 15–729.Google Scholar
Antal, M. J., Hofmann, L., Moreira, J. R., Brown, C. T., Steenblick, R. 1981. Design and operation of a solar fired biomass flash pyrolysis reactor. IGT's Symposium: Energy from Biomass and Wastes V, Lake Buena Vista, Florida.
Appell, H. R. 1977. The production of oil from wood waste. In: Anderson, L., Tilman, D. A., editors. Fuels from Waste. New York, NY, Academic Press, pp. 121–140.Google Scholar
Archer, D., Wang, P. 1990. The dielectric constant of water and Debye–Huckel limiting law slopes. J. Phys. Chem. Ref. Data 19:371–411.CrossRefGoogle Scholar
,[ASTM] American Society for Testing and Materials. 2003. ASTM G173–03. Available from: http://rredc.nrel.gov/solar/spectra/am1.5/. Retrieved August 21, 2009.
,ASTM. 2009. ASTM D6751-09 standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels. Available from: http://www.astm.org/Standards/D6751.htm.
Authier, O., Ferrer, M., Mauviel, G., Khalfi, A.-E., Lede, J. 2009. Wood fast pyrolysis: Comparison of lagrangian and eulerian modeling approaches with experimental measurements. Ind Eng Chem Res 48(10):4796–4809.CrossRefGoogle Scholar
,[AWEA] American Wind Energy Association. 2005. The economics of wind energy. Available from: http://www.awea.org/pubs/factsheets/EconomicsOfWind-Feb2005.pdf and http://www.awea.org/faq/cost.html.
Babu, B. V., Chaurasia, A. S. 2003. Modeling for pyrolysis of solid particle: Kinetics and heat transfer effects. Energ Convers Manage 44(14):2251–2275.CrossRefGoogle Scholar
Backman, R., Frederick, W. J., Hupa, M. 1993. Basic studies on black-liquor pyrolysis and char gasification. Bioresource Technol 46(1–2):153–158.CrossRefGoogle Scholar
Bai, F. W., Anderson, W. A., Moo-Young, M. 2008. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26(1):89–105.CrossRefGoogle ScholarPubMed
Bala, B. K. 2005. Studies on biodiesels from transformation of vegetable oils for diesel engines. Energ Edu Sci Technol 15(1–2):1–45.Google Scholar
Balat, M. 2007. An overview of biofuels and policies in the European Union countries. Energ Sources 2(2):167–181.CrossRefGoogle Scholar
Bandura, A. V., Lvov, S. N. 2006. The ionization constant of water over wide ranges of temperature and density. J Phys Chem Ref Data 35(1):15–30.CrossRefGoogle Scholar
Bauen, A., Woods, J., Hailes, R. 2004. BIOPOWERSWITCH! A biomass blueprint to meet 15% of OECD electricity demand by 2020. Prepared for WWF International. Available from: http://assets.panda.org/downloads/biomassreportfinal.pdf.
Beaumont, O. 1985. Flash pyrolysis products from beech wood. Wood Fiber Sci 17:228–239.Google Scholar
Bech, N., Larsen, M. B., Jensen, P. A., Dam-Johansen, K. 2009. Modeling solid-convective flash pyrolysis of straw and wood in the pyrolysis centrifuge reactor. Biomass Bioenerg 33(6–7):999–1011.CrossRefGoogle Scholar
Becker, J., Boles, E. 2003. A modified Saccharomyces cerevisiae strain that consumes l-arabinose and produces ethanol. Appl Environ Microbiol 69(7):4144–4150.CrossRefGoogle ScholarPubMed
Berl, E. 1944. Production of oil from plant material. Science 99(2573):309–312.CrossRefGoogle ScholarPubMed
Bhattacharya, S. C., Abdul Salam, P. 2002. Low greenhouse gas biomass options for cooking in the developing countries. Biomass Bioenerg 22:305–317.CrossRefGoogle Scholar
,Biox Corporation. 2009. Production process. Available from: http://www.bioxcorp.com/production_process.php.
Blanco, M. I. 2009. The economics of wind energy. Renew Sust Energ Rev 13(6–7):1372–1382.CrossRefGoogle Scholar
Bobleter, O. 1994. Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 19:797–841.CrossRefGoogle Scholar
Bolinger, M., Wiser, R. 2006. A comparative analysis of business structures suitable for farmer-owned wind power projects in the United States. Energ Policy 34(14):1750–1761.CrossRefGoogle Scholar
Boocock, D. G. B. 2001. Single-phase process for production of fatty acid methyl esters as biofuels from mixtures of triglycerides and fatty acids. PCT Int. Appl., 26 pp., CODEN: PIXXD2 WO 200 1012581 A1 200 10222.
Boocock, D. G. B., Konar, S. K., Mao, V., Sidi, H. 1996. Fast one-phase oil-rich processes for the preparation of vegetable oil methyl esters. Biomass Bioenerg 11(1):43–50.CrossRefGoogle Scholar
Boutin, O., Ferrer, M., Lédé, J. 1998. Radiant flash pyrolysis of cellulose: Evidence for the formation of short life time intermediate liquid species. J Anal Appl Pyrol 47(1):13–31.CrossRefGoogle Scholar
,BP. 2009. Statistical Review of World Energy. Available from: http://bp.com/statisticalreview. Accessed June 2009.
Branca, C., Di Blasi, C. 2006. Multistep mechanism for the devolatilization of biomass fast pyrolysis oils. Ind Eng Chem Res 45(17):5891–5899.CrossRefGoogle Scholar
Bridgwater, A. V. 2003. Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 91(2–3):87–102.CrossRefGoogle Scholar
Bridgwater, A. V., Meier, D., Radlein, D. 1999. An overview of fast pyrolysis of biomass. Org Geochem 30(12):1479–1493.CrossRefGoogle Scholar
Brown, R. C. 2003. Biorenewable Resources: Engineering New Products from Agriculture. Ames, IA, Iowa State University Press.Google Scholar
Brown, R. C., Holmgren, J. 2009. Fast pyrolysis and bio-oil upgrading. Available from: http://www.ars.usda.gov/sp2UserFiles/Program/307/biomasstoDiesel/RobertBrown&JenniferHolmgrenpresentationslides.pdf. Accessed June 2009.
Brunner, G. 2009. Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes. J Supercrit Fluid 47:373–381.CrossRefGoogle Scholar
Bukur, D. B., Nowicki, Z., Manne, R. K., Lang, X. 1995. Activation studies with a precipitated iron catalysts for Fischer-Tropsch synthesis. II. Reaction studies. J Catal 155(2):366–375.CrossRefGoogle Scholar
Bush, G. W. 2007. State of the Union Address. Available from: http://georgewbush-whitehouse.archives.gov/news/releases/2007/01/20070123-2.html Washington, DC.
Byrd, A. J., Pant, K. K., Gupta, R. B. (2007). Hydrogen production from ethanol by reforming in supercritical water using Ru/Al2O3 catalyst. Energ Fuel 21(6):3541–3547.CrossRefGoogle Scholar
Byrd, A. J., Pant, K. K., Gupta, R. B. (2008). Hydrogen production from glycerol by reforming in supercritical water over Ru/Al2O3 catalyst. Fuel 87(13–14):2956–2960.CrossRefGoogle Scholar
,[CDIAC] Carbon Dioxide Information Analysis Center. 2009. Oak Ridge, TN, Ridge National Laboratory. Available from: http://cdiac.ornl.gov.
Chandel, A. K., Narasu, M. L., Chandrasekhar, G., Manikyam, A., Rao, L. V. 2009. Use of Saccharum spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae VS3. Bioresour Technol 100(8):2404–2410.CrossRefGoogle ScholarPubMed
Chandra, R. P., Bura, R., Mabee, W. E., Berlin, A., Pan, X., Saddler, J. N. 2007. Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics?Adv Biochem Eng Biotechnol 108: 67–93.Google ScholarPubMed
Chen, Z., Blaabjerg, F. 2009. Wind farm – A power source in future power systems. Renew Sust Energ Rev 13(6–7):1288–1300.CrossRefGoogle Scholar
Cheng, Q. 2007. The impact of biofuel development on grain market. Heilongjiang Grain 4:26–29.Google Scholar
Chongkhong, S., Tongurai, C., Chetpattananondh, P. 2009. Continuous esterification for biodiesel production from palm fatty acid distillate using economical process. Renew Energ 34(4):1059–1063.CrossRefGoogle Scholar
Chornet, E., Overend, R. P. 1985. Biomass liquefaction: An overview. In: Overend, R. P., Milne, T. A., Mudge, L. K., editors. Fundamentals of Thermochemical Biomass Conversion. New York, NY, Elsevier Applied Science, pp. 967–1002.CrossRefGoogle Scholar
Chum, H. L., Black, S. K. 1990. Process for fractionating fast-pyrolysis oils, and products derived therefrom. U.S. Patent 4942269.
,CleanTechnica. 2008. Available from: http://cleantechnica.com/files/2008/03/wood1.jpg.
Colares, J. F. 2008. A brief history of Brazilian biofuel legislation. Syracuse J Law Commerce 35:101–116.Google Scholar
,[COSO] Crude Oil Supply Outlook. 2007. Report to the Energy Watch Group EWG-Series No 3/2007, October. Available from: http://www.energywatchgroup.org/fileadmin/global/pdf/EWG_Oilreport_10–2007.pdf.
Cuff, D. J., Young, W. J. 1980. The United States Energy Atlas. New York, NY, Free Press/Macmillan.Google Scholar
Czernik, S., Bridgwater, A. V. 2004. Overview of applications of biomass fast pyrolysis oil. Energ Fuel 18(2):590–598.CrossRefGoogle Scholar
Dale, B. E., Leong, C. K., Pham, T. K., Esquivel, V. M., Rios, I., Latimer, V. M. 1996. Hydrolysis of lignocellulosics at low enzyme levels: Application of the AFEX process. Bioresource Technol 56(1):111–116.CrossRefGoogle Scholar
Davis, B. H. 2002. Overview of reactors for liquid phase Fischer–Tropsch synthesis. Catal Today 71:249–300.CrossRefGoogle Scholar
Davis, H., Figueroa, C., Schaleger, L. 1982. Hydrogen or carbon monoxide in the liquefaction of biomass. Adv Hydrogen Energ 3(2):849–862.Google Scholar
Davis, K. S. 2001. Corn Milling, Processing and Generation of Co-products. Minnesota Nutrition Conference, Minnesota Corn Growers Association Technical Symposium, September 11, 2001.
Davis, S. C., Anderson-Teixeira, K. J., DeLucia, E. H. 2009. Life-cycle analysis and the ecology of biofuels. Trends Plant Sci 14(3):140–146.CrossRefGoogle ScholarPubMed
Torre Ugarte, D. G., English, B. C., Jensen, K. 2007. Sixty billion gallons by 2030: Economic and agricultural impacts of ethanol and biodiesel expansion. Am J Agr Econ 89(5):1290–1295.CrossRefGoogle Scholar
Wit, M., Faaij, A. 2009. European biomass resource potential and costs. Biomass Bioenerg, Available online August 21, 2009, doi:10.1016/j.biombioe.2009.07.011.CrossRef
Demirbas, A., Gullu, D., Caglar, A., Akdeniz, F. 1997. Determination of calorific values of fuel from lignocellulosics. Energ Source 19: 765–770.CrossRefGoogle Scholar
Demirbas, A. 2000a. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energ Convers Manage 41:633–646.CrossRefGoogle Scholar
Demirbas, A. 2000b. Recent advances in biomass conversion technologies. Energ Edu Sci Technol 6:19–41.Google Scholar
Demirbas, A. 2000c. Biomass resources for energy and chemical industry. Energ Edu Sci Technol 5:21–45.Google Scholar
Demirbas, A. 2002a. Biodiesel from vegetable oils via transesterification in supercritical methanol. Energ Convers Manage 43:2349–56.CrossRefGoogle Scholar
Demirbas, A. 2002b. Pyrolysis and steam gasification processes of black liquor. Energ Convers Manage 43:877–884.CrossRefGoogle Scholar
Demirbas, A. 2003. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: A survey. Energ Convers Manage 44:2093–2109.CrossRefGoogle Scholar
Demirbas, A. 2004a. Ethanol from cellulosic biomass resources. Int J Green Energ 1:79–87.CrossRefGoogle Scholar
Demirbas, A. 2004b. Combustion characteristics of different biomass fuels. Prog Energ Combust 30(2):219–230.CrossRefGoogle Scholar
Demirbas, A. 2005a. Pyrolysis of ground beech wood in irregular heating rate conditions. J Anal Appl Pyrolysis 73:39–43.CrossRefGoogle Scholar
Demirbas, A. 2005b. Bioethanol from cellulosic materials: A renewable motor fuel from biomass. Energ Source 27:327–337.CrossRefGoogle Scholar
Demirbas, A. 2006a. Electrical power production facilities from green energy sources. Energ Sources 1: 291–301.CrossRefGoogle Scholar
Demirbas, A. 2006b. Energy priorities and new energy strategies. Energ Edu Sci Technol 16:53–109.Google Scholar
Demirbas, A. 2006c. Global biofuel strategies. Energ Edu Sci Technol 17:27–63.Google Scholar
Demirbas, A. 2007a. Importance of biodiesel as transportation fuel. Energ Policy 35: 4661–4670.CrossRefGoogle Scholar
Demirbas, A. 2007b. Progress and recent trends in biofuels. Prog Energ Combust 33:1–18.CrossRefGoogle Scholar
Demirbas, A. 2007c. The influence of temperature on the yields of compounds existing in bio-oils obtained from biomass samples via pyrolysis. Fuel Proc Technol 88:591–597.CrossRefGoogle Scholar
Demirbas, A. 2008a. Biodiesel: A Realistic Fuel Alternative for Diesel Engines. London, Springer.Google Scholar
Demirbas, A. 2008b. Economic and environmental impacts of the liquid biofuels. Energ Edu Sci Technol 22:37–58.Google Scholar
Demirbas, A. 2008c. Biofuel sources, biofuel policy, biofuel economy and global biofuel projections. Energ Convers Manage 49:2106–2116.CrossRefGoogle Scholar
Demirbas, A. H. 2009. Inexpensive oil and fats feedstocks for production of biodiesel. Energ Edu Sci Technol A 23(1–2):1–13.Google Scholar
Demirbas, A., Arin, G. 2002. An overview of biomass pyrolysis. Energ Source 24:471–482.CrossRefGoogle Scholar
Demirbas, M. F. 2007. Electricity production using solar energy. Energ Source A 29:563–569.CrossRefGoogle Scholar
Demirbas, M. F., Balat, M. 2006. Recent advances on the production and utilization trends of bio-fuels: A global perspective. Energ Convers Manage 47(15–16):2371–2381.CrossRefGoogle Scholar
Deng, L., Yan, Z., Fu, Y., Guo, Q. X. 2009. Green solvent for flash pyrolysis oil separation. Energ Fuel 23(6):3337–3338.CrossRefGoogle Scholar
Diaz, E., Mohedano, A. F., Calvo, L., Gilarranz, M. A., Casas, J. A., Rodriguez, J. J. 2007. Hydrogenation of phenol in aqueous phase with palladium on activated carbon catalysts. Chem Eng J 131(1–3):65–71.CrossRefGoogle Scholar
Diebold, J. P. 2000. A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oil. Available from: http://www.nrel.gov/docs/fy00osti/27613.pdf.
Diebold, J. P., Czernik, S. 1997. Additives to lower and stabilize the viscosity of pyrolysis oils during storage. Energ Fuel 11(5):1081–1091.CrossRefGoogle Scholar
,[DNR] Department of Natural Resources, Louisiana. 2009. Basic ethanol production. Available from: http://dnr.louisiana.gov/sec/execdiv/TECHASMT/alternative_fuels/ethanol/fuel_alcohol_1987/015.htm. Accessed August 2009.
Dry, M. E. 2002. The Fischer–Tropsch process: 1950–2000. Catal Today 71:227–241.CrossRefGoogle Scholar
Dufey, A. 2006. Biofuels production, trade and sustainable development: Emerging issues. Environmental Economics Programme, Sustainable Markets Discussion Paper No. 2. London, International Institute for Environment and Development (IIED), September.Google Scholar
Eckhardt, A., 2009. Freedom Fuel: How and Why Biodiesel Policy Should Reflect Freedom. Available from: http://www.cascadepolicy.org/2005/10/14/freedom-fuel-how-and-why-biodiesel-policy-should-reflect-freedom/. Accessed Dec 3, 2009.
,[EC] European Commission. 2003. Renewable energies: A European policy. Promoting Biofuel in Europe. European Commission, Directorate-General for Energy and Transport, B-1049, Bruxelles, Belgium.Google Scholar
Edinger, R., Kaul, S. 2000. Humankind's detour toward sustainability: Past, present, and future of renewable energies and electric power generation. Renew Sust Energ Rev 4:295–313.CrossRefGoogle Scholar
,[EIA] Energy Information Agency. 2009a. Available from: http://www.eia.doe.gov/.
,EIA. 2009b. Energy KIDS: Renewable hydropower. Available from: http://www.eia.doe.gov/kids/energyfacts/sources/renewable/water.html.
Elbashir, N. O., Roberts, C. B. 2004. Selective control of hydrocarbon product distribution in supercritical phase Fischer–Tropsch synthesis. ACS Div Petrol Chem Prepr 49:422–425.Google Scholar
Elliott, D. C. 2007. Historical developments in hydroprocessing bio-oils. Energ Fuel 21(3):1792–1815.CrossRefGoogle Scholar
Elliott, D. C., Schiefelbein, G. F. 1989. Liquid hydrocarbon fuels from biomass. Amer Chem Soc Div Fuel Chem Preprints 34(4):1160–1166.Google Scholar
Encinar, J. M., Gonzalez, J. F., Rodríguez, J. J., Tejedor, A. 2002. Biodiesel fuels from vegetable oils: Transesterification of Cynara cardunculus L. oils with ethanol. Energ Fuel 16:443–450.CrossRefGoogle Scholar
,[EREC] European Renewable Energy Council. 2006. Renewable Energy Scenario by 2040. Brussels, EREC Statistics.
Escobar, J. C., Lora, E. S., Venturini, O. J., Yanez, E. E., Castillo, E. F., Almazan, O. 2009. Biofuels: Environment, technology and food security. Renew Sust Energ Rev 13(6–7):1275–1287.CrossRefGoogle Scholar
,[ESRL] Earth System Research Laboratory. 2009. Teacher resources: Carbon cycle toolkit. Available from: http://www.esrl.noaa.gov/gmd/education/carbon_toolkit/basics.html.
,[EWEA] European Wind Energy Association. 2005. Report: Large scale integration of wind energy in the European power supply: Analysis, issues and recommendations. Available from http://www.ewea.org/fileadmin/ewea_documents/documents/publications/grid/051215_Grid_report.pdf.
Fang, Z., Minowa, T., Smith, R. L.., Ogi, T., Kozinski, J. A. 2004. Liquefaction and Gasification of Cellulose with Na2CO3 and Ni in Subcritical Water at 350 C. Ind. Eng. Chem. Res. 43:2454–2463.CrossRefGoogle Scholar
Fang, Z., Sato, T., Smith, R. L.., Inomata, H., Arai, K., Kozinski, J. A. 2008. Reaction chemistry and phase behaviour of lignin in high-temperature and super critical water. Bioresource Technol 99:3424–3430.CrossRefGoogle Scholar
Feng, W., Kooi, H. J., Swaan Arons, Jakob. 2004a. Phase equilibria for biomass conversion processes in subcritical and supercritical water. Chem Eng J 98:105–113.CrossRefGoogle Scholar
Feng, W., Kooi, H. J., Swaan Arons, J. 2004b. Biomass conversions in subcritical and supercritical water: driving force, phase equilibria, and thermodynamic analysis. Chem Eng Process 43:1459–1467.CrossRefGoogle Scholar
Foster, B. L., Dale, B. E., Doran-Peterson, J. B. 2001. Enzymatic hydrolysis of ammonia-treated sugar beet pulp. Appl Biochem Biotechnol 91(3):269–282.CrossRefGoogle ScholarPubMed
Fratzl, P. 2003. Cellulose and collagen: from fibres to tissues. Curr Opin Colloid In 8(1):32–39.CrossRefGoogle Scholar
Fridleifsson, I. B. 2001. Geothermal energy for the benefit of the people. Renew Sust Energ Rev 5:299–312.CrossRefGoogle Scholar
Galbe, M., Sassner, P., Wingren, A., Zacchi, G. 2007. Process engineering economics of bioethanol production. Adv Biochem Eng Biotechnol 108:303–327.Google ScholarPubMed
Galbe, M., Zacchi, G. 2007. Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Eng Biotechnol 108:41–65.Google ScholarPubMed
Garcia-Perez, M., Chaala, A., Roy, C. 2002. Vacuum pyrolysis of sugarcane bagasse. J Anal Appl Pyrol 65:111–136.CrossRefGoogle Scholar
Garg, H. P., Datta, G. 1998. Global status on renewable energy. In: Solar Energy Heating and Cooling Methods in Building. From the International Workshop of Iran University of Science and Technology, May 19–20.
Gavillan, R. M., Mattschei, P. K. 1980. Fractionation of oil obtained by pyrolysis of lignocellulosic materials to recover a phenolic fraction for use in making phenol-formaldehyde resins. U.S. Patent 4233465.
,[GBEP] Global Bioenergy Partnership. 2007. A review of the current state of bioenergy development in G8+5 countries, New York, NY.Google Scholar
Gleick, P. H. 1999. The World's Water: The Biennial Report on Freshwater Resources. Oakland, CA, Pacific Institute for Studies in Development, Environment, and Security.Google Scholar
,Goddard Institute for Space Studies. 2009. Datasets and images. Available from: http://data.giss.nasa.gov/gistemp/graphs. Accessed August 20, 2009.
Goldemberg, J. 2002. Brazilian Energy Initiative. World Summit on Sustainable Development, Johannesburg, South Africa.
Goldemberg, J., Coelho, S. T., Nastari, P. M., Lucon, O. 2004. Ethanol learning curve-the Brazilian experience. Biomass Bioenerg 26:301–304.CrossRefGoogle Scholar
Goldemberg, J., Coelho, S. T., Guardabassi, P. 2008. The sustainability of ethanol production from sugarcane. Energ Policy 36(6):2086–2097.CrossRefGoogle Scholar
Goldstein, I. S. 1981. Organic Chemicals from Biomass. Boca Raton, FL, CRC Press.Google Scholar
Gopinathan, M. C., Sudhakaran, R. 2009. Biofuels: Opportunities and challenges in India. In Vitro Cell Dev Biol Plant 45(3):350–371.CrossRefGoogle Scholar
Goudriaan, F., Peferoen, D. G. R. 1990. Liquid fuels from biomass via a hydrothermal process. Chem Eng Sci 45(8):2729–2734.CrossRefGoogle Scholar
Goyal, H. B., Seal, D., Saxena, R. C. 2007 (volume date 2008). Biofuels from thermochemical conversion of renewable resources: A review. Renewable & Sustainable Energy Reviews 12:504–517.CrossRefGoogle Scholar
Graham, L. A., Belisle, S. L., Baas, C.-L. 2008. Emissions from light duty gasoline vehicles operating on low blend ethanol gasoline and E85. Atmos Environ 42: 4498–4516.CrossRefGoogle Scholar
Grebner, D. L., Perez-Verdin, G., Sun, C., Munn, I. A., Schultz, E. B., Mamey, T. G. 2008. Woody biomass feedstocks; A case study on availability, production costs, and implications for bioenergy conversion in Mississippi. In: Solomon, B., and Luzadis, V., editors. Renewable Energy From Forest Resources in the United States. New York, NY, Routledge, pp. 261–280.Google Scholar
Gronli, M. 1996. A theoretical and experimental study of the thermal degradation of biomass. PhD Thesis, University of Trondheim, Norway.Google Scholar
Guettel, R., Kunz, U., Turek, T. 2008. Reactors for Fischer-Tropsch synthesis. Chem Eng Technol 31(5):746–754.CrossRefGoogle Scholar
Gui, M. M., Lee, K. T., Bhatia, S. 2008. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 33(11):1646–1653.CrossRefGoogle Scholar
Gunasekaran, P., Raj, K. C. 1999. Ethanol fermentation technology: Zymomonas mobilis. Curr Sci India 77:56–68.Google Scholar
Gupta, R. B. 2008. Hydrogen Fuel: Production, Transport, and Storage. Boca Raton, FL, CRC Press.CrossRefGoogle Scholar
Gutherz, J. M., Schiller, M. E. 1991. A passive solar heating system for the perimeter zone of office buildings. Energy Source 13(1):39–54.CrossRefGoogle Scholar
,[GWEC] Global Wind Energy Council. 2009. Available from: http://www.gwec.net/.
Haas, M. J., McAloon, A. J., Yee, W. C., Foglia, T. A. 2006. A process model to estimate biodiesel production costs. Bioresource technology 97:671–8.CrossRefGoogle ScholarPubMed
Hacisalihoglu, B., Demirbas, A. H., Hacisalihoglu, S. 2008. Hydrogen from gas hydrate and hydrogen sulfide in the Black Sea. Energ Edu Sci Technol 21:109–115.Google Scholar
Hall, D. O., Mynick, H. E., Williams, R. H. 1991. Carbon sequestration versus fossil fuel substitution: alternative roles for biomass in coping with greenhouse warming. In: White, J. C., editor. Global Climate Change: the Economic Costs of Mitigation and Adaptation. New York, NY, Elsevier Science, pp. 241–282.CrossRefGoogle Scholar
Hansen, A. C., Zhang, Q., Lyne, P. W. L. 2005. Ethanol-diesel fuel blends: A review. Bioresource Technol 96(3):277–285.CrossRefGoogle ScholarPubMed
Hartley, I. D., Wood, L. J. 2008. Hygroscopic properties of densified softwood pellets. Biomass Bioenerg 32(1):90–93.CrossRefGoogle Scholar
Hashaikeh, R., Fang, Z., Butler, I. S., Hawari, J., Kozinski, J. A. 2007. Hydrothermal dissolution of willow in hot compressed water as a model for biomass conversion. Fuel 86:1614–1622.CrossRefGoogle Scholar
Hashem, A., Akasha, R. A., Ghith, A., Hussein, D. A. 2007. Adsorbent based on agricultural wastes for heavy metal and dye removal: A review. Energ Edu Sci Technol 19(1–2):69–86.Google Scholar
Hawes, D., Feldman, D., Banu, D. 1993. Latent heat storage in building materials. Energ Buildings 20:77–86.CrossRefGoogle Scholar
He, B. J., Zhang, Y., Yin, Y., Funk, T. L., Riskowski, G. L. 2001. Effects of alternative process gases on the thermochemical conversion process of swine manure. T ASAE 44(6):1873–1880.Google Scholar
Hiete, M., Berner, U., Richter, O. 2001. Calculation of global carbon dioxide emissions: Review of emission factors and a new approach taking fuel quality into consideration. Global Biogeochem Cy 15(1):169–181.CrossRefGoogle Scholar
Hill, J., Nelson, E., Tilman, D., Polasky, S., Tiffany, D. 2006. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103(30):11206–11210.CrossRefGoogle ScholarPubMed
Hoekman, S. K. 2009. Biofuel in the US: Challenges and opportunities. Renew Energ 34: 14–22.CrossRefGoogle Scholar
Holmgren, J., Marinangeli, R., Nair, P., Elliott, D., Bain, R. 2008. Consider upgrading pyrolysis oils into renewable fuels. Hydrocarb Process 87(9):95–96, 98, 100, 103.Google Scholar
Hopkins, M. W., Antal, M. J. 1984. Radiant flash pyrolysis of biomass using a Xenon falsh tube. J Appl Polymer Sci 29:2163–2175.CrossRefGoogle Scholar
Huang, C.-F., Lin, T.-H., Guo, G.-L., Hwang, W.-S. 2009. Enhanced ethanol production by fermentation of rice straw hydrolysate withgout detoxification using a newly adapted strain of Pichia stipitis. Bioresource Technol 100(17):3914–3920.CrossRefGoogle ScholarPubMed
Huang, W. C., Ramey, D. E., Yang, S. T. 2004. Continuous production of butanol by Clostridium acetobutylicum immobilized in a fibrous bed bioreactor. Appl Biochem Biotechnol A 113–116:887–898.CrossRefGoogle Scholar
Huang, X., Roberts, C. B. 2003. Selective Fischer–Tropsch synthesis over an Al2O3 supported cobalt catalyst in supercritical hexane. Fuel Process Technol 83(1–3):81–99.CrossRefGoogle Scholar
,[IEA] International Energy Agency. 2004. Biofuel for transport: An international perspective. Available from: http://www.iea.org/textbase/nppdf/free/2004/biofuels2004.pdf
,IEA. 2007. Key world energy statistics, Paris. Available from: http://www.iea.org/Textbase/nppdf/free/2007/key_stats_2007.pdf.
,IGP. 2009. Available from: http://www.industrialgasplants.com/gifs/floating-gas.jpg. Accessed April 2009.
,[INL, DOE] Idaho National Laboratory, Department of Energy. 2009. Available from: https://inlportal.inl.gov/portal/server.pt?open=512&objID=422&parentname=CommunityPage&parentid=14&mode=2. Accessed August 2009.
,[IPCC] Intergovernmental Panel on Climate Change. 1996. Climate Change 1995: The Science of Climate Change, Contribution of Working Group 1 to the Second Assessment Report of the IPCC, UNEP and WMO. Cambridge, Cambridge University Press.Google Scholar
,IPCC. 1997. Greenhouse Gas Inventory Reference Manual: Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Report, 3:1.53, Paris. Available from: http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html.
,IPCC. 2005. Carbon Dioxide Capture and Storage. IPCC Special Report prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B., O. Davidson, H.C. de Coninck, M. Loos and L.A. Meyer (eds.)], Cambridge University Press, Cambridge, United kingdom and New York, NY, USA, 442 pp.
Jacobson, D. L. 2007. PEM fuel cells. Available from: http://physics.nist.gov/MajResFac/NIF/pemFuelCells.html. Accessed September 7, 2007.
Janse, A. M. C., Jong, X. A., Prins, W., Swaaij, W. P. M. 1999. Heat transfer coefficients in the rotating cone reactor. Powder Technol 106(3):168–175.CrossRefGoogle Scholar
Jansen, J. C. 2003. Policy support for renewable energy in the European Union. A review of the regulatory framework and suggestions for adjustment. Available from: http://www.ecn.nl/docs/library/report/2003/c03113.pdf.
Jean-Baptiste, P., Ducroux, R. 2003. Energy policy and climate change. Energ Policy 31:155–166.CrossRefGoogle Scholar
Jean-Marie, A., Griboval-Constant, A., Khodakov, A. Y., Diehl, F. 2009. Cobalt supported on alumina and silica-doped alumina: Catalyst structure and catalytic performance in Fischer-Tropsch synthesis. CR Acad Sci II C 12(6–7):660–667.Google Scholar
Jeffries, T. W., Jin, Y. S. 2004. Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63:495–509.CrossRefGoogle ScholarPubMed
Jin, F. M., Zhou, Z. Y., Takehiko, M. 2005. Controlling hydrothermal reaction pathways to improve acetic acid production from carbohydrate biomass. Environ Sci Technol 39(6):1893–1902.CrossRefGoogle ScholarPubMed
Jin, Y., Datye, A. K. 2000. Phase transformations in iron Fischer–Tropsch catalysts during temperature-programmed reduction. J Catal 196:8–17.CrossRefGoogle Scholar
Jørgensen, H., Kristensen, J. B., Felby, C. 2007. Enzymatic conversion of lignocellulose into fermentable sugars: Challenges and opportunities. Biofuels Bioprod Bioref 1:119–134.CrossRefGoogle Scholar
Jothimurugesan, K., Goodwin, J. G., Santosh, S. K., Spivey, J. J. 2000. Development of Fe Fischer–Tropsch catalysts for slurry bubble column reactors. Catal Today 58:335–344.CrossRefGoogle Scholar
Jun, K.-W., Roh, H.-S., Kim, K.-Su., Ryu, J.-S., Lee, K.-W. (2004). Catalytic investigation for Fischer-Tropsch synthesis from bio-mass derived syngas. Appl Catal A-Gen 259(2):221–226.CrossRefGoogle Scholar
Kadiman, O. K. 2005. Crops: Beyond foods. In: Proceedings of the 1st International Conference of Crop Security, Malang, Indonesia, September 20–23.
Kalogirou, S. A. 2004. Solar thermal collectors and applications. Prog Energ Combust 30:231–295.CrossRefGoogle Scholar
Karagoez, S., Bhaskar, T., Muto, A., Sakata, Y., Oshiki, T., Kishimoto, T. 2005. Low-temperature catalytic hydrothermal treatment of wood biomass: analysis of liquid products. Chem Eng J 108(1–2):127–137.CrossRefGoogle Scholar
Karhumaa, K., Wiedemann, B., Hahn-Hagerdal, B., Boles, E., Gorwa-Grauslund, M. F. 2006. Co-utilization of l-arabinose and d-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Microb Cell Fact 10:5–18.Google Scholar
Karr, W. E., Holtzapple, M. T. 2000. Using lime pretreatment to facilitate the enzymatic hydrolysis of corn stover. Biomass and Bioenergy 18: 189–199.CrossRefGoogle Scholar
Kartha, S., Larson, E. D. 2000. Bioenergy primer: Modernised biomass energy for sustainable development, Technical Report UN Sales Number E.00.III.B.6. New York, NY, United Nations Development Programme.Google Scholar
Kim, H., Choi, B. 2008. Effect of ethanol-diesel blend fuels on emission and particle size distribution in a common-rail direct injection engine with warm-up catalytic converter. Renew Energ 33: 2222–2228.CrossRefGoogle Scholar
Kim, S., Dale, B. E. 2004. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg 26:361–375.CrossRefGoogle Scholar
Kim Oanh, N. T., Upadhyay, N., Zhuang, Y.-H., et al. 2006. Particulate air pollution in six Asian cities: Spatial and temporal distributions, and associated sources. Atmos Environ 40(18):3367–3380.CrossRefGoogle Scholar
Klinke, H. B., Thomsen, A. B., Ahring, B. K. 2004. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26.CrossRefGoogle ScholarPubMed
Kodama, T. 2003. High-temperature solar chemistry for converting solar heat to chemical fuels. Prog Energ Combust Sci 29(6):567–597.CrossRefGoogle Scholar
Kohl, A. L. 1986. Black liquor gasification. Can J Chem Eng 64:299–304.CrossRefGoogle Scholar
Koizumi, T., Ohga, , , K. 2007. Biofuels Policies in Asian Countries: Impact of the Expanded Biofuels Programs on World Agricultural Markets. Journal of Agricultural & Food Industrial Organization 5:1–20.CrossRefGoogle Scholar
Kong, L. Z., Li, G. M., Wang, H. 2008. Hydrothermal catalytic conversion of biomass for lactic acid production. J Chem Technol Biotechnol 83:383–388.CrossRefGoogle Scholar
Kosugi, T., Pyong, S. P. 2003. Economic evaluation of solar thermal hybrid H2O turbine. Energy 28:185–198.CrossRefGoogle Scholar
Kruse, A., Dinjus, E. 2007a. Hot compressed water as reaction medium and reactant. 1. Properties and synthesis reactions. J Supercrit Fluid 39: 362–380.CrossRefGoogle Scholar
Kruse, A., Dinjus, E. 2007b. Hot compressed water as reaction medium and reactant. 2. Degradation reactions. J Supercrit Fluid 41:361–379.CrossRefGoogle Scholar
Kumar, P., Barrett, D. M., Delwiche, M. J., Stroeve, P. 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729.CrossRefGoogle Scholar
Kumar, S., Byrd, A., Gupta, R. B. 2009. Sub- and super-critical water technology for biofuels: swtichgrass to ethanol, biocrude, and hydrogen. The 31st Symposium on Biotechnology for Fuels and Chemicals, San Francisco, May.
Kumar, S., Gupta, R. B. 2008. Hydrolysis of microcrystalline cellulose in sub- and supercritical water in a continuous flow reactor. Ind Eng Chem Res 47:9321–9329.CrossRefGoogle Scholar
Kumar, S., Gupta, R. B. 2009. Biocrude production from switchgrass using subcritical water. Energ Fuel, 23:5151–5159.CrossRefGoogle Scholar
Kusdiana, D., Saka, S. 2001. Kinetics of transesterification in rapeseed oil to biodiesel fuels as treated in supercritical methanol. Fuel 80:693–698.CrossRefGoogle Scholar
Kusdiana, D., Saka, S. 2004a. Two-step preparation for catalyst-free biodiesel fuel production: Hydrolysis and methyl esterification. Appl Biochem Biotechnol 113–116:781–791.CrossRefGoogle ScholarPubMed
Kusdiana, D., Saka, S. 2004b. Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresource Technol 91:289–295.CrossRefGoogle ScholarPubMed
Kutz, M. (ed). 2007. Environmentally Conscious Alternative Energy Production. Hoboken, NJ, John Wiley & Sons.CrossRef
Lachke, A. 2002. Biofuel from D-xylose – the second most abundant sugar. Resonance 7: 50–58.CrossRefGoogle Scholar
Lal, R. 2005. World crop residues production and implications of its use as a biofuel. Environ Int 31:575–584.CrossRefGoogle ScholarPubMed
Larson, E. D., Jin, H. 1999. Biomass conversion to Fischer-Tropsch liquids: Preliminary energy balances. In: Overend, R., Chornet, E., editors. Proceedings of the Fourth Biomass Conference of the Americas. Kidlington, Elsevier Science, vol. 1–2, pp. 843–854.Google Scholar
Laurent, E., Delmon, B. 1994. Influence of water in the deactivation of a sulfided NiMo/γ-A12O3 catalyst during hydrodexygenation. J Catal 146(1):284–291.CrossRefGoogle Scholar
Laxman, R. S., Lachke, A. H. 2008. Bioethanol from lignocellulosic biomass. Part 1: Pretreatment of the substrates. In: Pandey, A., editor. Handbook of Plant-Based Biofuels. Boca Raton, FL, CRC Press, pp. 121–139.Google Scholar
Lédé, J., Pharabod, F. 1997. Chimie solaire dans le Monde et en France. Entropie 204: 47–55.Google Scholar
Lédé, J. 1998. Solar thermochemical conversion of biomass. Solar Energ 65(1):3–13.CrossRefGoogle Scholar
Lédé, J., Berthelot, P., Villermaux, J., Rolin, A., François, H., Déglise, X. 1980. Pyrolyse flash de déchets ligno-cellulosiques en vue de leur valorisation par l'énergie solaire concentrée. Rev Phys Appl 15:545–552.CrossRefGoogle Scholar
Lédé, J., Villermaux, J., Royère, C., Blouri, B., Flamant, G. 1983. Utilisation de l'énergie solaire concentrée pour la pyrolyse du bois et des huiles lourdes du pétrole. Entropie 110: 57–69.Google Scholar
Lee, S. Y., Holder, G. D. 2001. Methane hydrates potential as a future energy source. Fuel Process Technol 71:181–186.CrossRefGoogle Scholar
Leistritz, F. L., Hodur, N. M. 2008. Biofuels: A major rural economic development opportunity. Biofuels Bioprod Bioref 2(6):501–504.CrossRefGoogle Scholar
Lin, S.-Y. 2009. Hydrogen production from coal. In: Gupta, R. B., editor. Hydrogen Fuel. Boca Raton, FL, CRC Press, pp. 103–125.Google Scholar
Low, S. A., Isserman, A. M. 2009. Ethanol and the local economy: Industry trends, location factors, economic impacts, and risks. Econ Dev Q 23(1):71–88.CrossRefGoogle Scholar
Luijkx, G. C. A., Rantwijk, F. V., Bekkum, H. V. 1993. Hydrothermal formation of 1,2,4-benzenetriol from 5-hydroxymethyl-2-furaldehyde and D-fructose. Carbohyd Res 242:131–139.CrossRefGoogle Scholar
Luo, Z. Y., Wang, S. R., Liao, S. R. 2004. Research on biomass fast pyrolysis for liquid fuel. Biomass Bioenerg 26(5):455–462.CrossRefGoogle Scholar
Lurgi, . 2009. Biodiesel. Available from: http://www.lurgi.com/website/fileadmin/user_upload/pdfs/02_Biodiesel-E.pdf.
Ma, F., Hanna, M. A. 1999. Biodiesel production: A review. Bioresource Technol 70:1–15.CrossRefGoogle Scholar
Maine, F. W. 2006. Wood plastics composites workshop, June 15, 2006. Available from: http://www.seainnovation.com.
Mani, S., Tabil, L. G., Sokhansanj, S. 2004, Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass. Biomass and Bioenergy 27:339–352.CrossRefGoogle Scholar
Martin, C., Galbe, M., Wahlbom, C. F., Hahn-Hagerdal, B., Jonsson, L. J. 2002. Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme Microbial Technol 31:274–282.CrossRefGoogle Scholar
Masaru, W., Takafumi, S., Hiroshi, I. 2004. Chemical reactions of C1 compounds in near-critical and supercritical water. Chem Rev 104:5803–5821.Google Scholar
McKendry, P. 2002. Energy production from biomass (part 3): Gasification technologies. Bioresource Technol 83(1):55–63.CrossRefGoogle ScholarPubMed
Mehtiev, S. F. 1986. Origin of petroleum. Geol Balcan 16(4):3–16.Google Scholar
Merino, S. T., Cherry, J. 2007. Progress and challenges in enzyme development for biomass utilization. Adv Biochem Eng Biotechnol 108:95–120.Google ScholarPubMed
Millet, M. A., Baker, A. J., Scatter, L. D. 1976. Physical and chemical pretreatment for enhancing cellulose saccharification. Biotechnol Bioeng Symp 6:125–153.Google Scholar
Minowa, T., Zhen, F., Ogi, T. 1998. Cellulose decomposition in hot-compressed water with alkali or nickel catalyst. J Supercrit Fluid 13:253–259.CrossRefGoogle Scholar
Minowa, T., Zhen, F., Ogi, T. 1999. Liquefaction of cellulose in hot-compressed water using sodium carbonate: Production distribution at different reaction temperature. J Chem Eng Jpn 30(1):186–190.CrossRefGoogle Scholar
Miyazawa, T., Funazukuri, T. 2005. Polysaccharide hydrolysis accelerated by adding carbon dioxide under hydrothermal conditions. Biotechnol Prog 21:1782–1785.CrossRefGoogle ScholarPubMed
Mohan, D., Pittman, C. U.., Steele, P. H. 2006. Pyrolysis of wood/biomass for bio-oil: A critical review. Energ Fuel 20:848–889.CrossRefGoogle Scholar
Mok, W. S., Antal, M. J. 1992. Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water. Ind Eng Chem Res 31:1157–1161.CrossRefGoogle Scholar
Monnet, F. 2003. An introduction to anaerobic digestion of organic wastes. A report by Remade Scotland. Available from: http://www.biogasmax.eu/media/introanaerobicdigestion_073323000_1011_24042007.pdf.
Mulkins-Phillips, G. J., Stewart, J. E. 1974. Effect of environmental parameters on bacterial degradation of bunker C oil, crude oils, and hydrocarbons. Appl Microbiol 28:915–922.Google Scholar
Murphy, H., Niitsuma, H. 1999. Strategies for compensating for higher costs of geothermal electricity with environmental benefits. Geothermics 28:693–711.CrossRefGoogle Scholar
Murray, J. P., Fletcher, E. A. 1994, Reaction of steam with cellulose in a fluidized bed using concentrated sunlight. Energy (Oxford, UK) 19:1083–1098.CrossRefGoogle Scholar
Muthukumaran, P., Gupta, R. B. 2000. Sodium-carbonate-assisted supercritical water oxidation of chlorinated waste. Ind Eng Chem Res 39(12):4555–4563.CrossRefGoogle Scholar
Nakamura, G., ,UC Cooperative Extension. 2004. Biomass thinning for fuel reduction and forest restoration: Issues and opportunities. Available from: http://ucce.ucdavis.edu/files/filelibrary/5098/16265.pdf. Accessed May 2009.
Nas, B., Berktay, A. 2007. Energy potential of biodiesel generated from waste cooking oil: an environmental approach. Energ Sources 2:63–71.CrossRefGoogle Scholar
,[NBII] National Biological Information Infrastructure, U.S. Geological Survey. 2009. Available from: http://images.nbii.gov/RFemmer/D_thumbnail/92 Sorghum 0 field of sorghum.jpg. Accessed August 2009.
Nelson, D. A., Molton, P. M., Russell, J. A., Hallen, R. T. 1984. Application of direct thermal liquefaction for the conversion of cellulosic biomass. Ind Eng Chem Prod Res Dev 23(3):471–475.CrossRefGoogle Scholar
,[NIFC] National Interagency Fire Center. 2009. Fire information: National fire news. Available from: http://www.nifc.gov/fire_info/nfn.htm. Accessed May 2009.
Nitschke, W. R., Wilson, C. M. 1965. Rudolph Diesel, Pionier of the Age of Power. Norman, OK, University of Oklahoma Press.Google Scholar
Noureddini, H., Gao, X., Philkana, R. S. 2005. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresource Technol 96(7):769–777.CrossRefGoogle ScholarPubMed
,[NRCS, USDA] National Resources Conservation Service, U.S. Department of Agriculture. 2009. Conservation showcase. Available from: http://www.nm.nrcs.usda.gov/news/showcase/showcase.html. Accessed May 2009.
,[NREL] National Renewable Energy Laboratory. 2005. Biomass resources available in the United States. Available from: http://www.nrel.gov/gis/biomass.html Accessed April 2009.
,NREL. 2009a. http://www.nrel.gov/otec/achievements.html. Retrieved May 12, 2009.
,NREL. 2009b. http://www.nrel.gov/gis/solar.html Accessed April 2009.
,[OECD] Organization for Economic Co-operation & Development. 2008. Directorate on trade and agriculture: Economic assessment of biofuel support policies. Paris, OECD Publishing.Google Scholar
Ohgren, K., Bengtsson, O., Gorwa-Grauslund, M. F., Galbe, M., Hahn-Hagerdal, B., Zacchi, G. 2006. Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. J Biotechnol 126(4):488–498.CrossRefGoogle ScholarPubMed
Oliveira, A. J., Ramalho, J. 2006. Brazilian Agroenergy Plan 2006–2011. Ministry of Agriculture, Livestock, and Food Supply. Brasılia, Embrapa Publishing House.Google Scholar
Openshaw, K. 2000. A review of Jatropha curcas: An oil plant of unfulfilled promise. Biomass Bioenerg 19:1–15.CrossRefGoogle Scholar
,[ORNL] Oak Ridge National Laboratory. 2000. Boosting bioenergy and carbon storage in green plants. Available from: http://www.ornl.gov/info/ornlreview/v33_2_00/bioenergy.htm.
,ORNL. 2005. Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply. Available from: http://feedstockreview.ornl.gov/pdf/billion_ton_vision.pdf. Accessed April 2005.
,ORNL. 2009. Biochar. Available from: http://bioenergy.ornl.gov/papers/misc/biochar_factsheet.html. Accessed May 2009.
Osato, K., Omura, M., Suto, Y., et al. 2004. High-pressure treatment apparatus and method of operating high-pressure treatment apparatus. PCT Int. Appl., 19, pp., CODEN: PIXXD2 WO 200 4105927 A2 200 41209.
Overend, R. P. 1996. Production of electricity from biomass crops: US perspective. Golden, CO, National Renewable Energy Laboratory.Google Scholar
Papadikis, K., Gu, S., Bridgwater, A. V. 2009. CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors: Modelling the impact of biomass shrinkage. Chem Eng J 149(1–3):417–427.CrossRefGoogle Scholar
Patzlaff, J., Liu, Y., Graffmann, C., Gaube, J. 1999. Studies on product distributions of iron and cobalt catalyzed Fischer–Tropsch synthesis. Appl Catal. A-Gen 186(1–2):109–119.CrossRefGoogle Scholar
Penche, C. 1998. Layman's Guidebook on How to Develop a Small Hydro Site. European Small Hydropower Association (ESHA), Directorate General for Energy (DG XVII).
Perez-Verdin, G., Grebner, D. L., Munn, I. A., Sun, C., Grado, S. C. 2008. Economic impacts of woody biomass utilization for bioenergy in Mississippi. Forest Prod J 58(11):75–83.Google Scholar
Peterson, A. A., Vogel, F., Lachance, R. P., Froling, M., Antal, M. J.., Tester, J. W. 2008. Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energ Environ Sci 1:32–65.CrossRefGoogle Scholar
Petit, J. R., Jouzel, J., Raynaud, D., et al. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399(6735):429–436.CrossRefGoogle Scholar
Petrou, E. C., Pappis, C. P. 2009. Biofuels: A survey on pros and cons. Energ Fuel 23(2):1055–1066.CrossRefGoogle Scholar
Phillip, E. S. 1999. Organic chemical reactions in supercritical water. Chem Rev 99:603–621.Google Scholar
Pinzi, S., Garcia, I. L., Lopez-Gimenez, F. J., Luque de Castro, M. D., Dorado, G., Dorado, M. P. 2009. The ideal vegetable oil-based biodiesel composition: A review of social, economical and technical implications. Energ Fuel 23(5):2325–2341.CrossRefGoogle Scholar
Pirkle, J. L., Kaufmann, R. B., Brody, D. J., et al. 1998. Exposure of the U.S. population to lead, 1991–1994. Environ Health Persp 106:745–750.CrossRefGoogle ScholarPubMed
Prins, M. J., Ptasinski, K. J., Janssen, F. J. J. G. 2004. Exergetic optimisation of a production process of Fischer–Tropsch fuels from biomass. Fuel Proc Technol 86:375–389.CrossRefGoogle Scholar
Ragauskas, A. J., Williams, C. K., Davison, B. H.., et al. 2006. The path forward for biofuels and biomaterials. Science 311(5760):484–489.CrossRefGoogle ScholarPubMed
Ramage, J., Scurlock, J. 1996. Biomass. In: Boyle, G., editor. Renewable Energy: Power for a Sustainable Future. Oxford, Oxford University Press, p 137–182.Google Scholar
Reed, T. B., Lerner, R. M. 1973. Methanol. Versatile fuel for immediate use. Science (Washington, DC, United States) 182:1299–1304.CrossRefGoogle ScholarPubMed
,[RFA] Renewable Fuels Association. 2009. Ethanol Industry Statistics, Washington, DC.Google Scholar
Riedel, T., Claeys, M., Schulz, H., et al. 1999. Comparative study of FTS with H2/CO and H2/CO2 syngas using Fe and Co catalysts. Appl Catal A-Gen 186:201–213.CrossRefGoogle Scholar
Robins, W. K., Hsu, C. S. 2000. Petroleum composition. In: Kirk-Othmer Encyclopedia of Chemical Technology. Hoboken, NJ, John Wiley & Sons.Google Scholar
Saga, K., Yokoyama, S., Imou, K., Kaizu, Y. 2008. A comparative study of the effect of CO2 emission reduction by several bioenergy production systems. Int Energy J 9:53–60.Google Scholar
Saka, S., Kusdiana, D. 2001. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80:225–231.CrossRefGoogle Scholar
Salmenoja, K. 1993. Black-liquor gasification: Theoretical and experimental studies. Bioresource Technol 46:167–171.CrossRefGoogle Scholar
Sanderson, M. A., Adler, P. R. 2008. Perennial forages as second generation bioenergy crops. Int J Mol Sci 9:768–788.CrossRefGoogle ScholarPubMed
Santos, D. T., Sarrouh, B. F., Rivaldi, J. D., Converti, A., Silva, S. S. 2008. Use of sugarcane bagasse as biomaterial for cell immobilization for xylitol production. J Food Eng 86:542–548.CrossRefGoogle Scholar
Sasaki, M., Goto, K., Tajima, K., Adschiri, T., Arai, K. 2002. Rapid and selective retro-aldol condensation of glucose to glycolaldehyde in supercritical water. Green Chem 4:285–287.CrossRefGoogle Scholar
Sauve, S., Mcbride, M. B., Hendershot, W. H. 1997. Speciation of lead in contaminated soils. Environ Pollut 98:149–155.CrossRefGoogle Scholar
Savoie, P., Descoteaux, S. 2004. Artificial drying of corn stover in mid-size bales. Can Biosys Eng 46:225–226.Google Scholar
Schmitz, T. G., Seale, J. L., Buzzanell, P. 2002. Brazil's domination of the world sugar market. In: Schmitz, A., Spreen, T. H., Messina, W. A.., Moss, C. B., editors. Sugar and Related Sweetener Markets: International Perspectives. Oxfordshire, CABI Publishing, pp. 123–139.CrossRefGoogle Scholar
Schulz, H. 1999. Short history and present trends of FT synthesis. Appl Catal A-Gen 186:1–16.CrossRefGoogle Scholar
Scott, D. S. 1988. Pyrolysis process for biomass. Canadian Patent No. 1241541, September.
Shaddix, C. R., Hardesty, D. R. 1999. Combustion properties of biomass flash pyrolysis oils: Final project report, Sandia Report (SAND99–8238) prepared by Sandia National Laboratories, California.
Shah, S., Sharma, S., Gupta, M. N. 2004. Biodiesel preparation by lipase-catalyzed transesterification of Jatropha oil. Energ Fuel 18:154–159.CrossRefGoogle Scholar
Sheehan, J., Dunahay, T., Benemann, J., Roessler, P. 1998. A Look Back at the U.S. Department of Energy's Aquatic Species Program – Biodiesel from Algae. Golden, CO, National Renewable Energy Laboratory (NREL) Report: NREL/TP-580-24190.Google Scholar
Sierra, R., Smith, A., Granda, C., Holtzapple, M. T. 2008. Producing fuels and chemicals from lignocellulosic biomass. Chem Eng Prog 104(8):S10–S18.Google Scholar
Sievers, C., Valenzuela-Olarte, M. B., Marzialetti, T., Musin, I., Agrawal, P. K., Jones, C. W. 2009. Ionic-liquid-phase hydrolysis of pine wood. Ind Eng Chem Res 48(3):1277–1286.CrossRefGoogle Scholar
Sims, R. E. H. 2002. The Brilliance of Bioenergy: In Business and in Practice. London, Earthscan Publications.Google Scholar
Smeets, E. M. W., Faaij, A. P. C. 2007. Bioenergy potentials from forestry in 2050. An assessment of the drivers that determine the potential. Climatic Change 81:353–390.CrossRefGoogle Scholar
Spath, P. L., Dayton, D. C. 2003. Preliminary screening: Technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas. NREL/TP-510–34929, December.
Speidel, H. K., Lightner, R. L., Ahmed, I. 2000. Biodegradability of new engineered fuels compared to conventional petroleum fuels and alternative fuels in current use. Appl Biochem Biotechnol 84–86:879–897.Google ScholarPubMed
Srivastava, A., Prasad, R. 2000. Triglycerides-based diesel fuels. Renew Sust Energ Rev 4:111–133.CrossRefGoogle Scholar
Stelmachowski, M., Nowicki, L. 2003. Fuel from the synthesis gas-the role of process engineering. Appl Energ 74:85–93.CrossRefGoogle Scholar
Steynberg, A. P., Dry, M. E., Davis, B. H., Breman, B. B. 2004. Fischer–Tropsch reactors. In: Steynberg, A., Dry, M., editors. Fischer–Tropsch Technology. Amsterdam, Elsevier, pp. 64–96.CrossRefGoogle Scholar
Sumathi, S., Chai, S. P., Mohamed, A. R. 2008. Utilization of oil palm as a source of renewable energy in Malaysia. Renew Sust Energ Rev 12(9):2404–2421.CrossRefGoogle Scholar
Swenson, D. 2008. The economic impact of ethanol production in Iowa. Ames, IA, Iowa State University. Available from http://www.econ.iastate.edu/research/webpapers/paper_12865.pdf Accessed March 5, 2008.
Taylor, R. W., Berjoan, R., Coutures, J. P. 1980. Solar gasification of carbonaceous materials. Report No. UCRL-53063, Lawrence Livermore Laboratory. Livermore, CA, California University.Google Scholar
Theander, O. 1985. Cellulose, hemicellulose, and extractives. In: Overand, R. P., Mile, A. T., Mudge, L. K., editors. Fundamentals of Thermochemical Biomass Conversion. London, Elsevier, pp. 35–60.CrossRefGoogle Scholar
Tijmensen, M. J. A., Faaij, A. P. C., Hamelinck, C. N., Hardeveld, M. R. M. 2002. Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification. Biomass Bioenerg 23:129–152.CrossRefGoogle Scholar
Timell, T. E. 1967. Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1(1):45–70.CrossRefGoogle Scholar
Trieb, F. 2000. Competitive solar thermal power stations until 2010: The challenge of market introduction. Renew Energ 19:163–171.CrossRefGoogle Scholar
Tyner, W. E., Taheripour, F. 2007. Renewable energy policy alternatives for the future. Am J Agr Econ 89:1303–1310.CrossRefGoogle Scholar
,[UCS] Union of Concerned Scientists. 2009. Heat-trapping gases. Available from: http://www.ucsusa.org/publications/catalyst/heat-trapping-gasses.html. Accessed August 2009.
,United Nations. 2006. The emerging biofuels market: Regulatory, trade and development implications. United Nations Conference on Trade and Development, New York and Geneva.Google Scholar
,[UNDP] United Nations Development Programme. 2000. World Energy Assessment. Energy and the challenge of sustainability.
,[UNEP] United Nations Environment Programme. 2007. Global Environment Outlook (GEO-4): Environment for development. UNEP, Kenya.Google Scholar
,UNEP. 2008. UNEP/DEWA/GRID-Europe, GEO Data Portal. Compiled from CDIAC, Marland.G. T.A. Boden, and R.J. Anders. 2008. Global, Regional, and National Fossil Fuel CO2 Emissions.
,University of Cambridge. 2009. The history behind the ozone hole. Available from: http://www.atm.ch.cam.ac.uk/tour/part1.html. Accessed July 2009.
,U.S. Congress. 2007. Energy Independence and Security Act of 2007.
,[USDA] United States Department of Agriculture. 2003. Production Estimates and Crop Assessment Division Foreign Agricultural Service. EU: Biodiesel Industry Expanding Use of Oilseeds. Available from: http://www.fas.usda.gov/pecad2/highlights/2003/09/biodiesel3/USDA. 2006. The economic feasibility of ethanol production from sugar in the United States. Washington DC, July. Available from: http://www.usda.gov/oce/reports/energy/EthanolSugarFeasibilityReport3.pdf.
,[U.S. DOE] U.S. Department of Energy. 2006. Biodiesel handling and use guidelines. DOE /GO-102006–2358, Third Edition, Oak Ridge, TN.Google Scholar
,U.S. DOE. 2008. Lawrence Livermore National Laboratory, Available from: https://eed.llnl.gov. Accessed March 11, 2009.
,U.S. DOE. 2009. Energy KIDS. Available from: http://www.eia.doe.gov/kids/energyfacts. Accessed March 11, 2009.
,U.S. DOE, Energy Efficiency and Renewable Energy (EFRE). 2009. Ethanol myths and facts. Available from: http://www1.eere.energy.gov/biomass/printable_versions/ethanol_myths_facts.html. Accessed August 2009.
,[U.S. EPA] U.S. Environmental Protection Agency. 2002. A comprehensive analysis of biodiesel impacts on exhaust emissions. Draft Technical Report, EPA420-P-02–001, October.
,U.S. EPA. 2009a. Available from: http://www.epa.gov/air/airtrends/2007/graphics/Air_pollution_pathways_textbox.gif. Accessed April 2009.
,U.S. EPA. 2009b. Nitrogen oxides. Available from: http://www.epa.gov/air/emissions/nox.htm. Accessed April 2009.
,U.S. EPA. 2009c. Sulfur oxide. Available from: http://www.epa.gov/air/emissions/so2.htm. Accessed April 2009.
,U.S. EPA. 2009d. Mercury modeling in watersheds and water bodies. Available from: http://www.epa.gov/athens/research/modeling/mercury./<τπ/> Accessed April 2009.
Utlu, Z. 2007. Evaluation of biodiesel obtained from waste cooking oil. Energy Sources 29:1295–1304.CrossRefGoogle Scholar
Van, G. J., Shanks, B., Pruszko, R., Clements, D., Knothe, G. 2004. Biodiesel Production Technology. Golden, CO, National Renewable Energy Laboratory. Paper Contract No.: DE-AC36–99-GO10337.
Steen, E., Claeys, M. 2008. Fischer-Tropsch catalysts for the biomass-to-liquid process. Chem Eng Technol 31(5):655–666.CrossRefGoogle Scholar
Vidal, B. J. W. 2006. A photosynthesis civilization II (A Civilizac-ão da Fotossíntese II). See also: http://www.institutodosol.org.br/artigos.asp#S.
Wagner, W., Pruss, A. 2002. The IAPWS Formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31(2):387–535.CrossRefGoogle Scholar
Walker, J. D., Petrakis, L., Colwell, R. R. 1976. Comparison of biodegradability of crude and fuel oils. Can J Microbiol 22:598–602.CrossRefGoogle ScholarPubMed
Walter, A., Cortez, L. 1999. An historical overview of the Brazilian bioethanol program. Renew Energ Dev 11:2–4.Google Scholar
Walters, C. C. 2006. The origin of petroleum. Practical Advances in Petroleum Processing 1:79–101.CrossRefGoogle Scholar
Wardle, D. A. 2003. Global sale of green air travel supported using biodiesel. Renew Sust Energ Rev 7(1):1–64.CrossRefGoogle Scholar
,[WEC] World Energy Council. 2004. Survey of energy resources. London, WEC.Google Scholar
Wenzl, H. F. J. 1970. The Chemical Technology of Wod. New York, NY, Academic Press.Google Scholar
White, D. H., Wolf, D. 1987. A continuous extruder-feeder for reactor systems for biomass fuels processing. Energ Biomass Wastes 10:1685–1688.Google Scholar
White, D. H., Wolf, D. 1995. Direct biomass liquefaction by an extruder-feeder system. Chem Eng Commun 135: 1–19.CrossRefGoogle Scholar
,[WHO] World Health Organization. 2005. Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide.WHO, Switzerland.Google Scholar
Williams, R. H., Larson, E. D. 1996. Biomass gasifier gas turbine power generating technology. Biomass Bioenerg 10(2–3):149–166.CrossRefGoogle Scholar
Witze, A. 2007. Energy: That's oil, folks…Nature 445:14–17.CrossRefGoogle Scholar
Wolfson, A., Litvak, G., Dlugy, C., Shotland, Y., Tavor, D. 2009. Employing crude glycerol from biodiesel production as an alternative green reaction medium. Ind Crop Prod 30(1):78–81.CrossRefGoogle Scholar
Wu, B. S., Bai, L., Xiang, H. W., Li, Y. W., Zhang, Z. X., Zhong, B. 2004. An active iron catalyst containing sulfur for Fischer–Tropsch synthesis. Fuel 83:205–512.CrossRefGoogle Scholar
Yamaguchi, T. 1998. Structure of subcritical and supercritical hydrogen-bonded liquids and solutions. J Mol Liq 78:43–50.CrossRefGoogle Scholar
Yang, H., Zhou, Y., Liu, J. 2009. Land and water requirements of biofuel and implications for food supply and the environment in China. Energ Policy 37:1876–1885.CrossRefGoogle Scholar
Yesodharan, S. 2002. Supercritical water oxidation: An environmentally safe method for the disposal of organic wastes. Curr Sci 82(9–10):1112–1122.Google Scholar
Yu, Y., Lou, X., Wu, H. W. 2008. Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods. Energ Fuel 22(1):46–60.CrossRefGoogle Scholar
Yudovich, Ya. E., Ketris, M. P. 2005. Mercury in coal: A review. Part 1. Geochemistry. Int J Coal Geol 62(3):107–134.CrossRefGoogle Scholar
Yung, M. M., Jablonski, W. S., Magrini-Bair, K. A. 2009. Review of catalytic conditioning of biomass-derived syngas. Energ Fuel 23(4):1874–1887.CrossRefGoogle Scholar
Zhang, B., Keitz, M., Valentas, K. 2008. Thermal effects on hydrothermal biomass liquefaction. Appl Biochem Biotechnol 147:143–150.CrossRefGoogle ScholarPubMed
Zhang, Q., Chang, J., Wang, T. J., Xu, Y. 2007. Review of biomass pyrolysis oil properties and upgrading research. Energ Convers Manage 48:87–92.CrossRefGoogle Scholar
Zhang, X., Peterson, C., Reece, D., Haws, R., Moller, G. 1998. Biodegradability of biodiesel in the aquatic environment. Transactions of the ASAE 41:1423–1430.CrossRefGoogle Scholar
Zhang, Y., Dub, M. A., McLean, D. D., Kates, M. 2003. Biodiesel production from waste cooking oil. 2. Economic assessment and sensitivity analysis. BioresourceTechnol 90:229–240.CrossRefGoogle ScholarPubMed
Zhao, C., Kou, Y., Lemonidou, A. A., Li, X. B., Lercher, J. A. 2009. Highly selective catalytic conversion of phenolic bio-oil to alkanes. Angew Chem Int Ed Engl 48(22):3987–3990, S3987/1–S3987/6.CrossRefGoogle ScholarPubMed
Zhu, L., O'Dwyer, J. P., Chang, V. S., Granda, C. B., Holtzapple, M. T. 2008. Structural features affecting biomass enzymatic digestibility. Biores Technol 99(9):3817–3828.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Ram B. Gupta, Auburn University, Alabama, Ayhan Demirbas
  • Book: Gasoline, Diesel, and Ethanol Biofuels from Grasses and Plants
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511779152.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Ram B. Gupta, Auburn University, Alabama, Ayhan Demirbas
  • Book: Gasoline, Diesel, and Ethanol Biofuels from Grasses and Plants
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511779152.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Ram B. Gupta, Auburn University, Alabama, Ayhan Demirbas
  • Book: Gasoline, Diesel, and Ethanol Biofuels from Grasses and Plants
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511779152.016
Available formats
×