Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-14T06:28:57.899Z Has data issue: false hasContentIssue false

Tc-rich M stars: platypuses of low-mass star evolution

Published online by Cambridge University Press:  30 November 2022

Shreeya Shetye
Affiliation:
Institute of Physics, Laboratory of Astrophysics, École Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, 1290 Versoix, Switzerland email: shreeya.shetye@epfl.ch Institute of Astronomy and Astrophysics (IAA), Université Libre de Bruxelles (ULB), CP 226, Boulevard du Triomphe, B-1050 Bruxelles, Belgium
Sophie Van Eck
Affiliation:
Institute of Astronomy and Astrophysics (IAA), Université Libre de Bruxelles (ULB), CP 226, Boulevard du Triomphe, B-1050 Bruxelles, Belgium
Alain Jorissen
Affiliation:
Institute of Astronomy and Astrophysics (IAA), Université Libre de Bruxelles (ULB), CP 226, Boulevard du Triomphe, B-1050 Bruxelles, Belgium
Lionel Siess
Affiliation:
Institute of Astronomy and Astrophysics (IAA), Université Libre de Bruxelles (ULB), CP 226, Boulevard du Triomphe, B-1050 Bruxelles, Belgium
Stephane Goriely
Affiliation:
Institute of Astronomy and Astrophysics (IAA), Université Libre de Bruxelles (ULB), CP 226, Boulevard du Triomphe, B-1050 Bruxelles, Belgium

Abstract

The technetium-rich (Tc-rich) M stars reported in the literature (Little-Marenin & Little 1979; Uttenthaler et al. 2013) are puzzling objects since no isotope of technetium has a half-life longer than a few million years, and 9999Tc, the longest-lived isotope along the s-process path, is expected to be detected only in thermally-pulsing stars enriched with other s-process elements (like zirconium). Carbon should also be enriched, since it is dredged up at the same time, after each thermal pulse on the asymptotic giant branch (AGB). However, these Tc-enriched objects are classified as M stars, meaning that they neither have any significant zirconium enhancement (otherwise they would be tagged as S-type stars) nor any large carbon overabundance (in which case they would be carbon stars).

Here we present the first detailed chemical analysis of a Tc-rich M-type star, namely S Her. We first confirm the detection of the Tc lines, and then analyze its carbon and s-process abundances, and draw conclusions on its evolutionary status. Understanding these Tc-rich M stars is an important step to constrain the threshold luminosity for the first occurrence of the third dredge-up and the composition of s-process ejecta during the very first thermal pulses on the AGB.

Type
Contributed Paper
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Goriely, S. and Mowlavi, N. 2000, A&A, 362, 599G Google Scholar
Iben, I., Jr. and Renzini, A. 1983, ARA&A, 21, 271IGoogle Scholar
Jorissen, A. and Mayor, M. 1988, A&A, 198, 187J Google Scholar
Jorissen, A., Frayer, D. T., Johnson, H. R., Mayor, M. & Smith, V. V. 1993, A&A, 271, 463J Google Scholar
Keenan, P. C., Garrison, R. F., & Deutsch, A. J. 1974, ApJS, 28, 271 CrossRefGoogle Scholar
Keenan, P. C. & McNeil, R. C. 1989, ApJS, 71, 245 CrossRefGoogle Scholar
Little-Marenin, I. R. and Little, S. J. 1979, AJ, 84, 1374L CrossRefGoogle Scholar
Little, S. J., Little-Marenin, I. R., & Bauer, W. H. 1987, AJ, 94, 981L CrossRefGoogle Scholar
Merrill, P. W. 1952, ApJ, 116, 21M CrossRefGoogle Scholar
Raskin, G., van Winckel, H., Hensberge, H., Jorissen, A., Lehmann, H., Waelkens, C., Avila, G., de Cuyper, J. -P., Degroote, P., Dubosson, R., Dumortier, L., Frémat, Y., Laux, U., Michaud, B., Morren, J., Perez Padilla, J., Pessemier, W., Prins, S., Smolders, K., van Eck, S., & Winkler, J. 2011, A&A, 526A, 69RGoogle Scholar
Shetye, S., Van Eck, S., Jorissen, A., Van Winckel, H., Siess, L., Goriely, S., Escorza, A., Karinkuzhi, D., & Plez, B. 2018, A&A, 620A, 148S Google Scholar
Shetye, S., Goriely, S., Siess, L., Van Eck, S., Jorissen, A. & Van Winckel, H. 2019, A&A, 625L, 1S Google Scholar
Shetye, S., Van Eck, S., Goriely, S., Siess, L., Jorissen, A., Escorza, A., & Van Winckel, H. 2020, A&A, 635L, 6S Google Scholar
Shetye, S., and Van Eck, S., Jorissen, A., Goriely, S., Siess, L., Van Winckel, H., Plez, B., Godefroid, M., & Wallerstein, G. 2021, A&A, 650A, 118S Google Scholar
Smith, V. V. and Lambert, D. L. 1985, ApJ, 294, 326S CrossRefGoogle Scholar
Smith, V. V. and Lambert, D. L. 1990, ApJ, 294, 326S CrossRefGoogle Scholar
Uttenthaler, S. 2013, A&A, 556A, 38U Google Scholar
Van Eck, S. and Jorissen, A. 1999, A&A, 345, 127V Google Scholar
Van Eck, S. and Jorissen, A. and Udry, S. and Mayor, M. and Burki, G. and Burnet, M. & Catchpole, R. 2000a, A&AS, 145, 51V Google Scholar
Van Eck, S. and Jorissen, A. 2000b, A&A, 360, 196V Google Scholar
Van Eck, S., Neyskens, P., Jorissen, A., Plez, B., Edvardsson, B., Eriksson, K., Gustafsson, B., Jorgensen, & Nordlund, A. 2018, A&A, 601A, 10VGoogle Scholar