Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T11:36:54.397Z Has data issue: false hasContentIssue false

What will eROSITA reveal among X-ray faint isolated neutron stars?

Published online by Cambridge University Press:  04 June 2018

Adriana M. Pires*
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482, Potsdam, Germany email: apires@aip.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Since the discovery of the first radio pulsar fifty years ago, the population of neutron stars in our Galaxy has grown to over 2,600. A handful of these sources, exclusively seen in X-rays, show properties that are not observed in normal pulsars. Despite their scarcity, they are key to understanding aspects of the neutron star phenomenology and evolution. The forthcoming all-sky survey of eROSITA will unveil the X-ray faint end of the neutron star population at unprecedented sensitivity; therefore, it has the unique potential to constrain evolutionary models and advance our understanding of the sources that are especially silent in the radio and γ-ray regimes. In this contribution I discuss the expected role of eROSITA, and the challenges it will face, at probing the galactic neutron star population.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Agüeros, M. A., Posselt, B., Anderson, S. F., et al. 2011, AJ, 141, 176CrossRefGoogle Scholar
Bogdanov, S., 2014, ApJ, 790, 94CrossRefGoogle Scholar
Caraveo, P. A., 2014, ARA&A, 52, 211Google Scholar
Diehl, R., Halloin, H., Kretschmer, K., et al. 2006, Nature, 439, 45CrossRefGoogle Scholar
Gotthelf, E. V., Halpern, J. P., & Alford, J., 2013, ApJ, 765, 58CrossRefGoogle Scholar
Haberl, F., 2007, Ap&SS, 308, 181Google Scholar
Hewish, A., Bell, S. J., Pilkington, J. D., Scott, P. F., & Collins, R. A., 1968, Nature, 217, 709CrossRefGoogle Scholar
Ho, W. C. G., 2011, MNRAS, 414, 2567CrossRefGoogle Scholar
Kaspi, V. M. & Beloborodov, A. 2017, ARA&A, in press (ArXiv e-prints 1703.00068)Google Scholar
Keane, E. F., Ludovici, D. A., Eatough, R. P., et al. 2010, MNRAS, 401, 1057CrossRefGoogle Scholar
Keane, E., Bhattacharyya, B., Kramer, M., et al. 2015, in Advancing Astrophysics with the Square Kilometre Array, id. 40Google Scholar
Keith, M. J., Eatough, R. P., Lyne, A. G., et al. 2009, MNRAS, 395, 837CrossRefGoogle Scholar
Luo, J., Ng, C.-Y., Ho, W. C. G., et al. 2015, ApJ, 808, 130CrossRefGoogle Scholar
Manchester, R. N., Hobbs, G. B., Teoh, A., & Hobbs, M., 2005, AJ, 129, 1993CrossRefGoogle Scholar
McLaughlin, M. A., Lyne, A. G., Lorimer, D. R., et al. 2006, Nature, 439, 817CrossRefGoogle Scholar
Mereghetti, S., 2011, Ap&SS Proceedings, 21, 345Google Scholar
Pires, A. M., Schwope, A. D., & Motch, C., 2017, Astronomische Nachrichten, 338, 213CrossRefGoogle Scholar
Pons, J. A., & Miralles, J. A. and Geppert, U., 2009, A&A, 496, 207Google Scholar
Predehl, P., 2017, Astronomische Nachrichten, 338, 159CrossRefGoogle Scholar
Rutledge, R. E., Fox, D. W., Bogosavljevic, M., & Mahabal, A., 2003, ApJ, 598, 458CrossRefGoogle Scholar
Treves, A., Turolla, R., Zane, S., & Colpi, M., 2000, PASP, 112, 297CrossRefGoogle Scholar
Viganò, D., Rea, N., Pons, J. A., et al. 2013, MNRAS, 434, 123CrossRefGoogle Scholar
Voges, W., Aschenbach, B., Boller, T., et al. 1999, A&A, 349, 389Google Scholar
Yakovlev, D. G., & Pethick, C. J., 2004, ARA&A, 42, 169Google Scholar