Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T10:47:28.078Z Has data issue: false hasContentIssue false

Modelling coronal electron density and temperature profiles based on solar magnetic field observations

Published online by Cambridge University Press:  12 September 2017

J. M. Rodríguez Gómez
Affiliation:
National Institute for Space Research (INPE), Avenida dos Astronautas-12227-010, São José dos Campos-SP, Brazil email: jenny.gomez@inpe.br
L. E. Antunes Vieira
Affiliation:
National Institute for Space Research (INPE), Avenida dos Astronautas-12227-010, São José dos Campos-SP, Brazil email: jenny.gomez@inpe.br
A. Dal Lago
Affiliation:
National Institute for Space Research (INPE), Avenida dos Astronautas-12227-010, São José dos Campos-SP, Brazil email: jenny.gomez@inpe.br
J. Palacios
Affiliation:
Departamento de Física y Matemáticas, Universidad de Alcalá University Campus, Sciences Building, P.O. 28871, Alcalá de Henares, Spain
L. A. Balmaceda
Affiliation:
Instituto de Ciencias Astronómicas de la Tierra y el Espacio, ICATE-CONICET, Avda. de España Sur 1512, J5402DSP, San Juan, Argentina.
T. Stekel
Affiliation:
National Institute for Space Research (INPE), Avenida dos Astronautas-12227-010, São José dos Campos-SP, Brazil email: jenny.gomez@inpe.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The density and temperature profiles in the solar corona are complex to describe, the observational diagnostics is not easy. Here we present a physics-based model to reconstruct the evolution of the electron density and temperature in the solar corona based on the configuration of the magnetic field imprinted on the solar surface. The structure of the coronal magnetic field is estimated from Potential Field Source Surface (PFSS) based on magnetic field from both observational synoptic charts and a magnetic flux transport model. We use an emission model based on the ionization equilibrium and coronal abundances from CHIANTI atomic database 8.0. The preliminary results are discussed in details.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Charbonneau, P., 1995, ApJS, 101, 309 CrossRefGoogle Scholar
Bobra, M. G., Sun, X., Hoeksema, J. T., Turmon, M., Liu, Y., Hayashi, K., Barnes, G., & Leka, K. D., 2014, Solar Phys., 289, 9 CrossRefGoogle Scholar
Fontenla, J. M., Harder, J., Livingston, W., Snow, M., & Woods, T., 2011, JGRD, 116, D20, D20108Google Scholar
Hoeksema, J. T., Liu, Y., Hayashi, K., Sun, X., Schou, J., Couvidat, S., Norton, A., Bobra, M., Centeno, R., Leka, K. D., Barnes, G., & Turmon, M., 2014, Solar Phys., 289, 3483 CrossRefGoogle Scholar
Mazzotta, P., Mazzitelli, G., Colafrancesco, S., & Vittorio, N., 1998, A&A, 133, 403 Google Scholar
Meyer, J., 1985, ApJS, 57, 173 CrossRefGoogle Scholar
Schrijver, C. & De Rosa, M., 2003, Solar Phys., 212, 165 CrossRefGoogle Scholar
Schrijver, C., 2001, ApJ, 547, 475 CrossRefGoogle Scholar
Tripathi, D., Mason, H. E., Young, P. R., & Del Zanna, G., 2008, A&A, 481, 1 Google Scholar
Del Zanna, G., Dere, K. P., Young, P. R., Landi, E., & Mason, H. E., 2000, A&A, 582, A56 Google Scholar
Wheatland, M. S., Sturrock, P. A., & Roumeliotis, G., 2000, ApJ, 540, 2 CrossRefGoogle Scholar