Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-15T21:00:17.273Z Has data issue: false hasContentIssue false

Constraining Type Ia Supernova Progenitors

Published online by Cambridge University Press:  17 January 2013

E. Scannapieco
Affiliation:
School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
C. Raskin
Affiliation:
School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
M. Della Valle
Affiliation:
INAF- Osservatorio Astronomico di Capodimonte, Salita Moiariello, 16-80131, Napoli, Italy
C. Fryer
Affiliation:
CCS-2, Los Alamos National Laboratories, Los Alamos, NM, USA
J. Rhoads
Affiliation:
School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
G. Rockefeller
Affiliation:
CCS-2, Los Alamos National Laboratories, Los Alamos, NM, USA
F. X. Timmes
Affiliation:
School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present observational and theoretical studies constraining Type Ia supernova progenitors.

First, we use a new observational technique to show that “prompt” SNe Ia that trace star-formation on cosmic timescales exhibit a significant delay time of 200-500 million years. This implies that either the majority of SNe Ia companion stars have main-sequence masses less than three solar masses, or that most SNe Ia arise from double-white dwarf binaries.

Second we present a comprehensive study of white dwarf collisions as an avenue for creating SNe Ia. Using a smooth particle hydrodynamics code with a 13-isotope nuclear network, we show that several combinations of white dwarf masses and impact parameters produce enough 56Ni to result in luminosities ranging from those of sub-luminous to super-luminous SNe Ia, depending on the parameters of the collision.

Finally, we conduct a simulation survey of double-degenerate white dwarf mergers with varying mass combinations. Unlike previous works, we do not add detonations by hand to our simulations, and we do not find any thermonuclear explosions during the mergers. Instead, all but one of our simulations forms a cold, degenerate core surrounded by a hot disk, while our least massive pair of stars forms only a hot disk. We characterize the remnants by core mass, rotational velocity, and half-mass radius, and discuss how we will evolve them further with simulations that incorporate dissipative processes. Such simulations may indeed lead to double-degenerate Type Ia explosions that occur many orbits after the mergers themselves.

Keywords

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Benz, W., Cameron, A. G. W., & Bowers, R. L. 1989 in Wegner, G. (eds.), in White Dwarfs, Proc. IAU Symposium No. 114 (Berlin: Springer-Verlag), p. 511CrossRefGoogle Scholar
Fryer, C. L., Rockefeller, G., & Warren, M. S. 2006, ApJ, 643, 292Google Scholar
Fruchter, A. S., et al. 2006, Nature 441 463 LGoogle Scholar
Greggio, L. 2005, A&A, 441, 1055Google Scholar
Iben, I. Jr. & Tutukov, A. V. 1984, ApJS, 54, 335CrossRefGoogle Scholar
Kelly, P. L., Kirshner, R. P., & Pahre, M. 2008, ApJ, 687, 1201Google Scholar
Kobayashi, C., Tsujimoto, T. & Nomoto, K. 2000, ApJ, 539, 26Google Scholar
Mannucci, F., Della Valle, M. & Panagia, N. 2006, MNRAS, 370, 773Google Scholar
Oemler, & Tinsley, 1979, AJ, 84, 985Google Scholar
Pakmor, R., et al. 2010, Nature, 463, 61Google Scholar
Pritchet, C. J., Howell, D. A., & Sullivan, M. 2008, ApJ, 683, L25Google Scholar
Raskin, C., Scannapieco, E., Rhoads, J. & Della Valle, M. 2008, ApJ, 689, 358Google Scholar
Raskin, C., Scannapieco, E., Rhoads, J. & Della Valle, M. 2009a, ApJ, 707, 74Google Scholar
Raskin, C., Timmes, F.X., Scannapieco, E., Diehl, S., & Fryer, C. 2009b, MNRAS, 399, 156Google Scholar
Raskin, C., et al. 2010, ApJ, 724, 111Google Scholar
Raskin, C., Scannapieco, E., Rockefeller, G., Fryer, C., & Timmes, F.X. 2011, ApJ, submittedGoogle Scholar
Rosswog, S., Kasen, D., Guillochon, J., & Ramirez-Ruiz, E. 2009 ApJ, 705, L128Google Scholar
Scannapieco, E. & Bildsten, L. 2005, ApJ, 629, L85Google Scholar
van den Bergh, S., Li, W. & Filippenko, A. V. 2005, PASP, 834, 773Google Scholar