Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T12:04:11.131Z Has data issue: false hasContentIssue false

The rule of synchrotron radiation in the prebiotic evolution

Published online by Cambridge University Press:  05 July 2012

A. Naves de Brito*
Affiliation:
Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas, 13083-859, Campinas-SP, Brazil
A. Miranda da Silva
Affiliation:
Instituto de Física, Universidade de Brasília, Box 04455, 70919-970, Brasília-DF, Brazil
A. Mocellin
Affiliation:
Instituto de Física, Universidade de Brasília, Box 04455, 70919-970, Brasília-DF, Brazil

Abstract

Synchrotron radiation-based spectroscopic techniques are discussed. Their relevance to obtain information regarding the prebiotic evolution problem is pointed out. We present photoelectron–photoion coincidence (PEPICO) spectra of adenine and glycine obtained using 12 and 21 eV photons. The fragmentation pattern belonging to these molecules was found to present striking differences, which are discussed. Adenine partial ion yield in the energy region 12–21 eV is also presented. The neutral fragments were found to have very simple assignment. The importance of hydrogen cyanide (HCN) as a building block of these molecules is confirmed. A special instrumentation allowing precise comparisons between photon-induced desorption and energetic ion bombardment desorption is described. As an example, we show, for the first time, the frozen CO2 ice mass spectra bombarded by photons and energetic ions, under the same experimental conditions. The comparison shows that prebiotic evolution may only be properly understood if more than one particle, as energy source, is considered.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, J. (2001). Orig. Life Evol. Biosph. 31(1), 167183.CrossRefGoogle Scholar
Bailey, J., Chrysostomou, A., Hough, J., Gledhill, T., McCall, A., Clark, S., Ménard, F. & Tamura, M. (1998). Science 281(5377), 672.CrossRefGoogle Scholar
Bar-Nun, A. & Chang, S. (1983). J. Geophys. Res. 88(C11), 66626672.Google Scholar
Brack, A. (1998). The Molecular Origins of Life: Assembling Pieces of the Puzzle. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Burmeister, F. et al. (2010). J. Electron Spectrosc. Relat. Phenom. 180(1–3), 613.CrossRefGoogle Scholar
Cavasso Filho, R.L., Homen, M.G.P., Fonseca, P.T. & de Brito, A.N. (2007a). Rev. Sci. Instrum. 78, 115104.Google Scholar
Cavasso Filho, R.L., Lago, A.F., Homem, M.G.P., Pilling, S. & de Brito, A.N. (2007b). J. Electron Spectrosc. Relat. Phenom. 156, 168171.Google Scholar
Cline, D.B. (1997). Physical origin of homochirality in life, Santa Monica, CA (United States), 15–17 Feb 1995; AIP Conference Proceedings, No.379[APCPCS];OSTI Identifier: 452850, Report Number(s): CONF-9502169. American Institutes of Physics, New York, NY.Google Scholar
Coutinho, L., Homem, M., Cavasso, R., Marinho, R., Lago, A., de Souza, G. & de Brito, A. (2005). Braz. J. Phys. 35(4A), 940944.Google Scholar
Farenzena, L., Martinez, R., Iza, P., Ponciano, C., Homem, M., de Brito, A., da Silveira, E. & Wien, K. (2006). Int. J. Mass Spectrom. 251(1), 19.Google Scholar
Farenzena, L.S. et al. (2005). Earth Moon Planets 97(3–4), 311329.Google Scholar
Groth, W. & Weyssenhoff, H. (1960). Planet. Space Sci. 2(2–3), 7985.Google Scholar
Holland, H.D. (1962). In Petrologic Studies: A Volume to Honour A. F. Buddington, Engel, A. E., James, H. and Leonard, B. F. (eds), p. 447477. Geological Society of America, New York.Google Scholar
Holland, H.D. (1984). The Chemical Evolution of the Atmosphere and Oceans. Princeton University Press, Princeton, NJ.Google Scholar
Homem, M.G.P., Faraudo, G.S., Farenzena, L.S., Wien, K., da Silveira, E.F. & Naves de Brito, A. (2007). J. Electron Spectrosc. Relat. Phenom. 156, XLIIXLII.Google Scholar
Kasting, J.F., Eggler, D.H. & Raeburn, S.P. (1993). J. Geol. 101, 245257.Google Scholar
Lago, A., Coutinho, L., Marinho, R., de Brito, A. & de Souza, G. (2004). Chem. Phys. 307(1), 914.Google Scholar
Marinho, R., Lago, A., Homem, M., Coutinho, L., de Souza, G. & de Brito, A. (2006). Chem. Phys. 324(2–3), 420424.Google Scholar
Martinez, R., Ponciano, C., Farenzena, L., Iza, P., Homem, M., de Brito, A., Wien, K. & da Silveira, E. (2006). Int. J. Mass Spectrom. 253(1–2), 112121.CrossRefGoogle Scholar
Martinez, R., Farenzena, L.S., Iza, P., Ponciano, C.R., Homem, M.G.P., de Brito, A.N., Wien, K. & da Silveira, E.F. (2007a). J. Mass Spectrom. 42(10), 13331341.CrossRefGoogle Scholar
Martinez, R., Ponciano, C.R., Farenzena, L.S., Iza, P., Homem, M.G.P., de Brito, A.N., da Silveira, E.F. & Wien, K. (2007b). Int. J. Mass Spectrom. 262(3), 195202.CrossRefGoogle Scholar
Meierhenrich, U.J. & Thiemann, W.H.P. (2004). Orig. Life Evol. Biosph. 34(1), 111121.Google Scholar
Miller, S.L. (1953). Science 117(3046), 528529.Google Scholar
Pilling, S., Lago, A.F., Coutinho, L.H., de Castilho, R.B., de Souza, G.G.B. & Naves de Brito, A. (2007). Rapid Commun. Mass Spectrom. 21(22), 36463652.CrossRefGoogle Scholar
Pilling, S., Andrade, D.P.P., Neto, A.C., Rittner, R. & de Brito, A.N. (2009). J. Phys. Chem. A 113(42), 1116111166.Google Scholar
Pilling, S. et al. (2011). Mon. Not. R. Astron. Soc. 411(4), 22142222.CrossRefGoogle Scholar
Ponciano, C.R., Martinez, R., Farenzena, L.S., Iza, P., da Silveira, E.F., Homem, M.G.P., de Brito, A.N. & Wien, K. (2006). J. Am. Soc. Mass Spectrom. 17(8), 11201128.CrossRefGoogle Scholar
Ponciano, C.R., Martinez, R., Farenzena, L.S., Iza, P., Homem, M.G.P., de Brito, A.N., Wien, K. & da Silveira, E.F. (2008). J. Mass Spectrom. 43(11), 15211530.CrossRefGoogle Scholar
Rubey, W.W. (1955). Development of the hydrosphere and atmosphere, with special reference to probable composition of the early atmosphere. In Crust of the Earth ed. Poldervaart, Geol. Soc. America, Spec.Pap. 62, pp. 631650.Google Scholar
Sagan, C. & Khare, B.N. (1971). Science 173(3995), 417.Google Scholar
Schlesinger, G. & Miller, S.L. (1983). J. Mol. Evol. 19(5), 376382.CrossRefGoogle Scholar
Urey, H.C. (1952). Proc. Natl. Acad. Sci. U.S.A. 38(4), 351.Google Scholar
Walker, J., Klein, C., Schidlowski, M., Schopf, J., Stevenson, D. & Walter, M. (1983). In: Earth's Earliest Biosphere: Its Origin and Evolution (A84-43051 21-51). Princeton University Press, Princeton, NJ, vol. 1, pp. 260290.Google Scholar
Zahnle, K.J. (1986). J. Geophys. Res. 91(D2), 28192834.CrossRefGoogle Scholar