Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-18T20:18:51.328Z Has data issue: false hasContentIssue false

COMT Val158Met Genotype and Individual Differences in Executive Function in Healthy Adults

Published online by Cambridge University Press:  10 December 2010

Heather A. Wishart*
Affiliation:
Department of Psychiatry, Dartmouth Medical School, Lebanon, New Hampshire
Robert M. Roth
Affiliation:
Department of Psychiatry, Dartmouth Medical School, Lebanon, New Hampshire
Andrew J. Saykin
Affiliation:
Department of Radiology, Indiana University School of Medicine, Indianapolis, Indiana
C. Harker Rhodes
Affiliation:
Department of Pathology, Dartmouth Medical School, Lebanon, New Hampshire
Gregory J. Tsongalis
Affiliation:
Department of Pathology, Dartmouth Medical School, Lebanon, New Hampshire
Kristine A. Pattin
Affiliation:
Department of Genetics, Dartmouth Medical School, Lebanon, New Hampshire
Jason H. Moore
Affiliation:
Department of Genetics, Dartmouth Medical School, Lebanon, New Hampshire
Thomas W. McAllister
Affiliation:
Department of Psychiatry, Dartmouth Medical School, Lebanon, New Hampshire
*
Correspondence and reprint requests to: Heather A. Wishart, PhD, Neuropsychology Program and Brain Imaging Lab, Department of Psychiatry, Dartmouth Medical School/DHMC, One Medical Center Drive, Lebanon, NH 03756-0001. E-mail: wishart@dartmouth.edu

Abstract

The Val158Met polymorphism of the catechol-O-methyltransferase (COMT) gene may be related to individual differences in cognition, likely via modulation of prefrontal dopamine catabolism. However, the available studies have yielded mixed results, possibly in part because they do not consistently account for other genes that affect cognition. We hypothesized that COMT Met allele homozygosity, which is associated with higher levels of prefrontal dopamine, would predict better executive function as measured using standard neuropsychological testing, and that other candidate genes might interact with COMT to modulate this effect. Participants were 95 healthy, right-handed adults who underwent genotyping and cognitive testing. COMT genotype predicted executive ability as measured by the Trail-Making Test, even after covarying for demographics and Apolipoprotein E (APOE), brain-derived neurotrophic factor (BDNF), and ankyrin repeat and kinase domain containing 1 (ANKK1) genotype. There was a COMT-ANKK1 interaction in which individuals having both the COMT Val allele and the ANKK1 T allele showed the poorest performance. This study suggests the heterogeneity in COMT effects reported in the literature may be due in part to gene–gene interactions that influence central dopaminergic systems. (JINS, 2011, 17, 1–7)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barnett, J.H., Scoriels, L., Munafo, M.R. (2008). Meta-analysis of the cognitive effects of the catechol-O-methyltransferase gene Val158/108Met polymorphism. Biological Psychiatry, 64(2), 137144.CrossRefGoogle ScholarPubMed
Barnett, J.H., Scoriels, L., Munafo, M.R. (2009). Reply to Goldman. Biological Psychiatry, 65, e3e4.CrossRefGoogle Scholar
Barona, A., Reynolds, C., Chastain, R. (1984). A demographically based index of pre-morbid intelligence for the WAIS-R. Journal of Consulting & Clinical Psychology, 52(5), 885887.CrossRefGoogle Scholar
Bilder, R.M., Volavka, J., Lachman, H.M., Grace, A.A. (2004). The catechol-O-methyltransferase polymorphism: Relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacology, 29(11), 19431961.CrossRefGoogle Scholar
Bookheimer, S., Burggren, A. (2009). APOE-4 genotype and neurophysiological vulnerability to Alzheimer’s and cognitive aging. Annual Review of Clinical Psychology, 5, 343362.CrossRefGoogle ScholarPubMed
Briand, L.A., Gritton, H., Howe, W.M., Young, D.A., Sarter, M. (2007). Modulators in concert for cognition: Modulator interactions in the prefrontal cortex. Progress in Neurobiology, 83(2), 6991.CrossRefGoogle ScholarPubMed
Cerasa, A., Gioia, M.C., Labate, A., Liguori, M., Lanza, P., Quattrone, A. (2008). Impact of catechol-O-methyltransferase Val(108/158) Met genotype on hippocampal and prefrontal gray matter volume. Neuroreport, 19(4), 405408.CrossRefGoogle ScholarPubMed
Colzato, L.S., Waszak, F., Nieuwenhuis, S., Posthuma, D., Hommel, B. (2010). The flexible mind is associated with the catechol-O-methyltransferase (COMT) Val158Met polymorphism: Evidence for a role of dopamine in the control of task-switching. Neuropsychologia, 48(9), 27642768.CrossRefGoogle ScholarPubMed
Cowansage, K.K., LeDoux, J.E., Monfils, M.-H. (2010). Brain-derived neurotrophic factor: A dynamic gate-keeper of neural plasticity. Current Molecular Pharmacology, 3, 1229.CrossRefGoogle Scholar
Dardiotis, E., Fountas, K.N., Dardioti, M., Xiromerisiou, G., Kapsalaki, E., Tasiou, A., Hadjigeorgiou, G.M. (2010). Genetic association studies in patients with traumatic brain injury. Neurosurgical Focus, 28(1), E9.CrossRefGoogle ScholarPubMed
Delis, D., Kaplan, E. (2001). Delis-Kaplan executive function battery. San Antonio, TX: Psychological Corporation.Google Scholar
Dickinson, D., Elevåg, B. (2009). Genes, cognition and brain through a COMT lens. Neuroscience, 164, 7287.CrossRefGoogle ScholarPubMed
Egan, M.F., Goldberg, T.E., Kolachana, B.S., Callicott, J.H., Mazzanti, C.M., Straub, R.E., Weinberger, D.R. (2001). Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 98(12), 69176922.CrossRefGoogle ScholarPubMed
Egan, M.F., Kojima, M., Callicott, J.H., Goldberg, T.E., Kolachana, B.S., Bertolino, A., Weinberger, D.R. (2003). The BDNF Val66Met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112(2), 257269.CrossRefGoogle ScholarPubMed
Funke, B., Malhotra, A.K., Finn, C.T., Plocik, A.M., Lake, S.L., Lencz, T., Kucherlapati, R. (2005). COMT genetic variation confers risk for psychotic and affective disorders: A case control study. Behavioral & Brain Functions, 1, 19.CrossRefGoogle ScholarPubMed
Goldberg, T.E., Egan, M.F., Gscheidle, T., Coppola, R., Weickert, T., Kolachana, B.S., Weinberger, D.R. (2003). Executive subprocesses in working memory: Relationship to catechol-O-methyltransferase Val158Met genotype and schizophrenia. Archives of General Psychiatry, 60(9), 889896.CrossRefGoogle ScholarPubMed
Guldberg, H.C., Marsden, C.A. (1975). Catechol-O-methyl transferase: Pharmacological aspects and physiological role. Pharmacological Reviews, 27(2), 135206.Google ScholarPubMed
Hariri, A.R., Goldberg, T.E., Mattay, V.S., Kolachana, B.S., Callicott, J.H., Egan, M.F., Weinberger, D.R. (2003). Brain-derived neurotrophic factor Val66Met polymorphism affects human memory-related hippocampal activity and predicts memory performance. The Journal of Neuroscience, 23(17), 66906694.CrossRefGoogle ScholarPubMed
Koch, W., Ehrenhaft, A., Griesser, K., Pfeufer, A., Muller, J., Schomig, A., Kastrati, A. (2002). TaqMan systems for genotyping of disease-related polymorphisms present in the gene encoding apolipoprotein E. Clinical Chemistry & Laboratory Medicine, 40(11), 11231131.CrossRefGoogle ScholarPubMed
McAllister, T., Flashman, L.A., Rhodes, C.H., Tyler, A.L., Moore, J.H., Saykin, A., Tsongalis, G.J. (2008). Single nucleotide polymorphisms in ANKK1 and the dopamine D2 receptor gene affect cognitive outcome shortly after traumatic brain injury: A replication and extension study. Brain Injury, 22(9), 705714.CrossRefGoogle ScholarPubMed
McAllister, T.W., Rhodes, C.H., Flashman, L.A., McDonald, B.C., Belloni, D., Saykin, A.J. (2005). Effect of the dopamine D2 receptor T allele on response latency after mild traumatic brain injury. American Journal of Psychiatry, 162(9), 17491751.CrossRefGoogle ScholarPubMed
Meyer-Lindenberg, A., Nichols, T., Callicott, J., Ding, J., Kolachana, B., Buckholtz, J., Weinberger, D. (2006). Impact of complex genetic variation in COMT on human brain function. Molecular Psychiatry, 11, 867877.CrossRefGoogle ScholarPubMed
Nackley, A.G., Shabalina, S.A., Tchivileva, I.E., Satterfield, K., Korchynskyi, O., Makarov, S.S., Diatchenko, L. (2006). Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science, 314(5807), 19301933.CrossRefGoogle ScholarPubMed
Neville, M.J., Johnstone, E.C., Walton, R.T. (2004). Identification and characterization of ANKK1: A novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Human Mutation, 23(6), 540545.CrossRefGoogle ScholarPubMed
Parasuraman, R., Greenwood, P.M., Sunderland, T. (2002). The apolipoprotein E gene, attention, and brain function. Neuropsychology, 16(2), 254274.CrossRefGoogle ScholarPubMed
Ponce, G., Perez-Gonzalez, R., Aragues, M., Rodriguez-Jimenez, R., Jiminez-Arriero, M., Hoenicka, J. (2009). The ANKK1 kinase gene and psychiatric disorders. Neurotoxicology Research, 16, 5059.CrossRefGoogle ScholarPubMed
Reitan, R.M., Wolfson, D. (1993). The Halstead-Reitan neuropsychological test battery: Theory and clinical interpretation (2nd ed.). Tucson: Neuropsychology Press.Google Scholar
Reitz, C., Mayeux, R. (2009). Endophenotypes in normal brain morphology and Alzheimer’s disease: A review. Neuroscience, 164, 174190.CrossRefGoogle ScholarPubMed
Reuter, M., Peters, K., Schroeter, K., Koebke, W., Lenardon, D., Bloch, B., Hennig, J. (2005). The influence of the dopaminergic system on cognitive functioning: A molecular genetic approach. Behavioural Brain Research, 164(1), 9399.CrossRefGoogle ScholarPubMed
Reuter, M., Schmitz, A., Corr, P., Hennig, J. (2006). Molecular genetics support Gray’s personality theory: The interaction of COMT and DRD2 polymorphisms predicts the behavioural approach system. International Journal of Neuropsychopharmacology, 9(2), 155166.Google ScholarPubMed
Sánchez-Cubillo, I., Periáñez, J.A., Adrover-Roig, D., Rodríguez-Sánchez, J.M., Ríos-Lago, M., Tirapu, J., Barceló, F. (2009). Construct validity of the Trail Making Test: Role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. Journal of the International Neuropsychological Society, 15(3), 438450.CrossRefGoogle ScholarPubMed
Savitz, J., Solms, M., Ramesar, R. (2006a). Apolipoprotein E variants and cognition in healthy individuals: A critical opinion. Brain Research Reviews, 51(1), 125135.CrossRefGoogle ScholarPubMed
Savitz, J., Solms, M., Ramesar, R. (2006b). The molecular genetics of cognition: Dopamine, COMT and BDNF. Genes, Brain and Behavior, 5(4), 311328.CrossRefGoogle ScholarPubMed
Stelzel, C., Basten, U., Montag, C., Reuter, M., Fiebach, C.J. (2009). Effects of dopamine-related gene-gene interactions on working memory component processes. European Journal of Neuroscience, 29(5), 10561063.CrossRefGoogle ScholarPubMed
Tan, H.-Y., Chen, Q., Sust, S., Buckholtz, J.W., Meyers, J.D., Egan, M.F., Callicott, J.H. (2007). Epistasis between catechol-O-methyltransferase and type II metabotropic glutamate receptor 3 genes on working memory brain function. Proceedings of the National Academy of Sciences of the United States of America, 104(30), 1253612541.CrossRefGoogle ScholarPubMed
Tunbridge, E.M., Harrison, P.J., Weinberger, D.R. (2006). Catechol-O-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biological Psychiatry, 60(2), 141151.CrossRefGoogle ScholarPubMed
Xu, H., Kellendonk, C.B., Simpson, E.H., Keilp, J.G., Bruder, G.E., Polan, H.J., Gilliam, T.C. (2007). DRD2 C957T polymorphism interacts with the COMT Val158Met polymorphism in human working memory ability. Schizophrenia Research, 90(1–3), 104107.CrossRefGoogle ScholarPubMed
Zinkstok, J., Schmitz, N., van Amelsvoort, T., de Win, M., van den Brink, W., Baas, F., Linszen, D. (2006). The COMT val158met polymorphism and brain morphometry in healthy young adults. Neuroscience Letters, 405(1–2), 3439.CrossRefGoogle ScholarPubMed