Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T06:54:14.020Z Has data issue: false hasContentIssue false

Full- and partial-range eigenfunction expansions for Sturm-Liouville problems with indefinite weights*

Published online by Cambridge University Press:  14 November 2011

Hans G. Kaper
Affiliation:
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.
Man Kam Kwong
Affiliation:
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.
C. G. Lekkerkerker
Affiliation:
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.
A. Zettl
Affiliation:
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.

Synopsis

This article is concerned with eigenvalue problems of the form Au = λTu in a Hilbert space H, where Ais a selfadjoint positive operator generated by a second-order Sturm-Liouville differential expression and T a selfadjoint indefinite multiplicative operator which is one-to-one. Emphasis is on the full-range and partial-range expansionproperties of the eigenfunctions.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bocher, M.. Boundary problems in one dimension. In Proc. of the Fifth International Congress of Mathematicians, Vol. I, pp. 163195 (Cambridge, 1912).Google Scholar
2Richardson, R. G. D.. Contributions to the study of oscillation properties of the solutions of linear differential equations of the second order. Amer. J. Math. 40 (1918), 283316.CrossRefGoogle Scholar
3Hilbert, D.. Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen (Leipzig: Teubner, 1912, New York: Chelsea Publ. Co., 1953).Google Scholar
4Garbe, E.. Zur Theorie der Integralgleichungen dritter Art. Math. Ann. 76 (1915), 527547.CrossRefGoogle Scholar
5Kamke, E.. Zum Entwicklungssatz bei polaren Eigenwertaufgaben. Math. Z. 45 (1939), 706718.CrossRefGoogle Scholar
6Kamke, E.. Über die definiten selbstadjungierten Eigenwertaufgaben bei gewohnlichen linearen Differentialgleichungen: I, II, III, IV. Math. Z. 45 (1939), 759787; 46 (1940), 231-250,251-286; 48 (1942), 62-100.CrossRefGoogle Scholar
7Beals, R.. An abstract treatment of some forward-backward problems of transport and scattering. J. Funct. Anal. 34 (1979), 120.CrossRefGoogle Scholar
8Hangelbroek, R. J.. A functional-analytic approach to the linear transport equation. Transport Theory Statist. Phys. 5 (1976), 185.CrossRefGoogle Scholar
9Lekkerkerker, C. G.. The linear transport equation. The degenerate case c = 1, I and II. Proc. Roy. Soc. Edinburgh Sect. A 75 (1976), 259-282, 283295.CrossRefGoogle Scholar
10Kaper, H. G., Lekkerkerker, C. G. and Hejtmanek, J.. Spectral Methods in Linear Transport Theory (Basel: Birkhauser, 1982).Google Scholar
11Baouendi, M. S. and Grisvard, P.. Sur une equation d'evolution changeant de type. J. Funct. Anal. 2 (1968), 352367.CrossRefGoogle Scholar
12Beals, R.. Partial-range completeness and existence of solutions to two-way diffusion equations. J. Math. Phys. 22 (1981), 954960; erratum, J. Math. Phys. 24 (1983), 1932.CrossRefGoogle Scholar
13Beals, R.. Indefinite Sturm-Liouville problems and half-range completeness. J. Differential Equations (to appear).Google Scholar
14Greenberg, W., Mee, C. V. M. van der and Zweifel, P. F.. Generalized kinetic equations. Integral Equations Operator Theory 1 (1984), 6095.CrossRefGoogle Scholar
15Bethe, H. A., Rose, M. E. and Smith, L. P.. The multiple scattering of electrons. Proc. Amer. Philos. Soc. 78 (1938) 573585.Google Scholar
16Beals, R.. On an equation of mixed type from electron scattering. J. Math. Anal. Appl. 58 (1977), 3245.CrossRefGoogle Scholar
17Kaper, H. G., Kwong, M. K., Lekkerkerker, C. G. and Zettl, A.. Full- and half-range theory of indefinite Sturm-Liouville problems. ANL-83-76, Argonne National Laboratory, Argonne, Illinois, U.S.A. (1983).Google Scholar
18Abramowitz, M. and Stegun, I. A. (Eds). Handbook of Mathematical Functions(Applied Math. Series, Vol. 55) (Washington: National Bureau of Standards, 1964).Google Scholar
19Hardy, G. H., Littlewood, J. E. and Polya, G.. Inequalities (Cambridge University Press: 1952).Google Scholar
20Hangelbroek, R. J., private communication (1982).Google Scholar
21Mee, C. V. M. van der. Scattering and Factorization Methods in Transport Theory. Math. CentreTracts, Vol. 146, Amsterdam (1981).Google Scholar
22Veling, E. J. M.. Asymptotic analysis of a singular Sturm-Liouville boundary value problem. Integral Equations Operator Theory (to appear).Google Scholar
23Erdelyi, A.. Asymptotic Expansions (New York: Dover Publ., 1956).Google Scholar
24Fisch, N. J. and Kruskal, M. D.. Separating variables in two-way diffusion equations. J. Math. Phys. 21 (1980), 740750.CrossRefGoogle Scholar
25Beals, R. and Protopopescu, V.. Half-range completeness for the Fokker-Planck equation. J. Statist. Phys. 32 (1983), 565584.CrossRefGoogle Scholar