Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T08:03:15.726Z Has data issue: false hasContentIssue false

Travelling-wave solutions to the Korteweg-de Vries-Burgers equation

Published online by Cambridge University Press:  14 November 2011

J. L. Bona
Affiliation:
Department of Mathematics, University of Chicago, Chicago, Illinois 60637, U.S.A
M. E. Schonbek
Affiliation:
Department of Mathematics, Duke University, Durham, North Carolina 27706, U.S.A

Synopsis

The existence and certain qualitative properties of travelling-wave solutions to the Korteweg-de Vries-Burgers equation,

are established. The limiting behaviour of these waves, when ε tends to zero and when δ tends to zero is examined together with a singular limit wherein both ε and δ tend to zero.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Amick, C. J., Bona, J. L. and Schonbek, M. E.. Decay of solutions of nonlinear wave equations, in preparation.Google Scholar
2Benjamin, T. B.. The stability of solitary waves. Proc. Roy. Soc. London Ser. A 328 (1972), 153183.Google Scholar
3Benjamin, T. B., Bona, J. L. and Mahony, J. J.. Model equations for long waves in nonlinear dispersive systems. Philos. Trans. Roy. Soc. London Ser. A 272 (1972), 4778.Google Scholar
4Bona, J. L.. On the stability theory of solitary waves. Proc. Roy. Soc. London Ser. A 344 (1975), 363374.Google Scholar
5Bona, J. L., Pritchard, W. G. and Scott, L. R.. An evaluation of a model equation for water waves. Philos. Trans. Roy. Soc. London Ser. A 302 (1981), 457510.Google Scholar
6Bona, J. L. and Smith, R. W.. The initial-value problem for the Korteweg-de Vries equation. Philos. Trans. Roy. Soc. London Ser. A 278 (1975), 555–604.Google Scholar
7Canosa, J. and Gazdag, J.. The Korteweg-de Vries-Burgers equations. J. Comput. Phys. 23 (1977), 393403.Google Scholar
8Coddington, E. A. and Levinson, N.. Theory of ordinary differential equations (New York: McGraw-Hill, 1955).Google Scholar
9Conley, C. and Smoller, J.. Shock waves as limits of progressive-wave solutions of higher-order equations. Comm. Pure Appl. Math. 24 (1971), 459472.CrossRefGoogle Scholar
10Grad, H. and Hu, P. N.. Unified shock profile in a plasma. Phys. Fluids 10 (1967), 25962602.CrossRefGoogle Scholar
11Hammack, J. L. and Segur, H.. The Korteweg-de Vries equation and water waves. Part 2. Comparison with experiments. J. Fluid Mech. 65 (1974), 289314.CrossRefGoogle Scholar
12Hartman, P.. Ordinary differential equations (Baltimore: published by the author, 1973).Google Scholar
13Jeffrey, A. and Kakutani, T.. Weak nonlinear dispersive waves: a discussion centred around the Korteweg-de Vries equation. SIAM Rev. 14 (1972), 582643.Google Scholar
14Johnson, R. S.. A nonlinear equation incorporating damping and dispersion. Fluid Mech. 42 (1970), 4960.Google Scholar
15Johnson, R. S.. Shallow water waves on a viscous fluid—the undular bore. Phys. Fluids 15 (1972), 16931699.Google Scholar
16McLaughlin, D. W.. On the construction of a modulating multiphase wavetrain for a perturbed KdV equation, submitted for publication.Google Scholar
17Peletier, L. A.. Asymptotic stability of travelling waves. In the Proceedings of the IUTAM symposium on instability of continuous systems (ed. H. Leipholz) pp. 418422 (Berlin: Springer, 1971).CrossRefGoogle Scholar
18Peregine, D. H.. Calculations of the development of an undular bore. J. Fluid Mech. 25 (1966), 321330.Google Scholar
19Schonbek, M. E.. Convergence of solutions to nonlinear dispersive equations, submitted for publication.Google Scholar
20Whitham, G. B.. Linear and nonlinear waves (New York: John Wiley, 1974).Google Scholar
21Zabusky, N. J. and Galvin, C. J.. Shallow water waves, the Korteweg-de Vries equation and solitons. J. Fluid Mech. 47 (1971), 811824.Google Scholar