Published online by Cambridge University Press: 02 November 2012
The balancing of robotic systems is an important issue, because it allows significant reduction of torques. However, the literature review shows that the balancing of robotic systems is performed without considering the traveling trajectory. Although in static balancing the gravity effects on the actuators are removed, and in complete balancing the Coriolis, centripetal, gravitational, and cross-inertia terms are eliminated, but it does not mean that the required torque to move the manipulator from one point to another point is minimum. In this paper, “optimal spring balancing” is presented for open-chain robotic system based on indirect solution of open-loop optimal control problem. Indeed, optimal spring balancing is an optimal trajectory planning problem in which states, controls, and all the unknown parameters associated with the springs must be determined simultaneously to minimize the given performance index for a predefined point-to-point task. For this purpose, on the basis of the fundamental theorem of calculus of variations, the necessary conditions for optimality are derived that lead to the optimality conditions associated with Pontryagin's minimum principle and an additional condition associated with the constant parameters. The obtained optimality conditions are developed for a two-link manipulator in detail. Finally, the efficiency of the suggested approach is illustrated by simulation for a two-link manipulator and a PUMA-like robot. The obtained results show that the proposed method has dominant superiority over the previous methods such as static balancing or complete balancing.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.