Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T18:55:37.357Z Has data issue: false hasContentIssue false

Image analysis of expanding laser-produced lithium plasma plume in variable transverse magnetic field

Published online by Cambridge University Press:  21 April 2011

Ajai Kumar*
Affiliation:
Institute for Plasma Research, Gandhinagar, India
Sony George
Affiliation:
ISP, Cochin University of Science and Tech., Cochin, India
R.K. Singh
Affiliation:
Institute for Plasma Research, Gandhinagar, India
Hem Joshi
Affiliation:
Institute for Plasma Research, Gandhinagar, India
V.P.N. Nampoori
Affiliation:
ISP, Cochin University of Science and Tech., Cochin, India
*
Address correspondence and reprint requests to: Ajai Kumar, Institute for Plasma Research, Gandhinagar 382 428, India. E-mail: ajaiipr@ipr.res.in

Abstract

Using fast imaging technique, the effect of transverse magnetic field on the shape and dynamics of the lithium plasma plume has been studied. Enhancement in the overall emission intensity as well as appearance of distinct structures (lobes) in the plasma plume in the presence of magnetic field has been observed. By introducing a variable magnetic field, the influence of J × B force in expanding plasma plume across the transverse magnetic field has been explored. It appears that J × B force does not has a substantial role in the observed structures in the present case rather different atomic processes, which get affected due to change in plasma parameters, are responsible for appearance of these structures.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ADAS: Atomic Data Analysis Structure available online at http://adas.ac.ukGoogle Scholar
Fazio, E., Neri, F., Ossi, P.M., Santo, N. & Trusso, S. (2009). Ag nanocluster synthesis by laser ablation in Ar atmosphere: A plume dynamics analysis. Laser Part. Beams 27, 281290.CrossRefGoogle Scholar
Godwal, Y., Taschuk, M.T., Lui, S.L., Tsui, Y.Y. & Fedosejevs, R. (2008). Development of laser-induced breakdown spectroscopy for microanalysis applications. Laser Part. Beams 26, 95103.CrossRefGoogle Scholar
Harilal, S.S., O’Shay, B., Tillack, M.S., Bindhu, C.V. & Najmabadi, F. (2005). Fast photography of a laser generated plasma expanding across a transverse magnetic field. IEEE Trans. Plasma Sci. 33, 474475.CrossRefGoogle Scholar
Harilal, S.S., O’Shay, B., Tao, M. & Tillack, M. (2007). Ion debris mitigation from tin plasma using ambient gas, magnetic field and combined effects. Appl. Phys. B 86, 547553.CrossRefGoogle Scholar
Harilal, S.S., Tillack, M.S., O’Shay, B., Bindhu, C.V.F. & Najmabadi, F. (2004). Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field. Phys. Rev. E 69, 026413.CrossRefGoogle ScholarPubMed
Haverkamp, J.D., Bourham, M.A., Du, S. & Narayan, J. (2009). Plasma plume dynamics in magnetically assisted pulsed laser deposition. J. Phys. D 42, 025201.CrossRefGoogle Scholar
Joshi, H.C., Prahlad, V., Singh, R.K. & Kumar, A. (2009). Emission analysis of expanding laser produced lithium plasma plume in presence of ambient gas. Phys. Lett. A 373, 33503353.CrossRefGoogle Scholar
Kim, T.H., Nam, S.H., Park, H.S., Song, J.K & Park, S.M. (2007). Effects of transverse magnetic field on a laser-produced Zn plasma and ZnO films grown by pulsed laser deposition. Appl. Surf. Sci. 253, 8054.CrossRefGoogle Scholar
Kumar, A., Singh, R.K., Prahlad, V. & Joshi, H.C. (2010 a). Effect of magnetic field on laser blow-off Li plasma plume: Role of atomic processes. Laser Part. Beams 28, 121127CrossRefGoogle Scholar
Kumar, A., Singh, R.K., Prahlad, V. & Joshi, H.C. (2010 b). Effect of magnetic field on laser-blow-off lithium plasma plume: structured temporal emission profile. Phys. Lett. A 374, 25552560.CrossRefGoogle Scholar
Kumar, A., Chaudhary, V., Singh, R.K., George, S., Patel, K. & Singh, R. (2009). An experimental setup to study the expansion dynamics of laser blow-off plasma plume in variable transverse magnetic field. Rev. Sci. Instr. 80, 033503.CrossRefGoogle Scholar
Kumar, A., George, S., Singh, R.K. & Nampoori, V.P.N. (2010). Influence of laser beam intensity profile on propagation dynamics of laser-blow-off plasma plume. Laser Part. Beams 28, 387392.CrossRefGoogle Scholar
Neogi, A. & Thareja, R.K. (1999). Physics of plasmas laser-produced carbon plasma expanding in vacuum, low pressure ambient gas and non-uniform magnetic field. Phys. Plasmas 6, 365371.CrossRefGoogle Scholar
Peyser, T.A., Manka, C.K., Ripin, B.H. & Ganguly, G. (1992). Electron-ion hybrid instability in laser-produced plasma expansions across magnetic fields. Phys. Fluids B 4, 2448.CrossRefGoogle Scholar
Qindeel, R., Bidin, N.B. & Daud, Y.M. (2008). Dynamics expansion of laser produced plasma with different materials in magnetic field. J. Phys. Conf. Series 142, 012069.CrossRefGoogle Scholar
Rafique, M.S., Kaleeq-ur-Rahman, M., Riaz, I., Jalil, R. & Farid, N. (2008). External magnetic field effect on plume images and X-ray emission from a nanosecond laser produced plasma. Laser Part. Beams 26, 217.CrossRefGoogle Scholar
Rai, V.N., Rai, A.K., Yueh, F-Yu. & Singh, J.P. (2003). Optical emission from laser-induced breakdown plasma of solid and liquid samples in the presence of a magnetic field. Appl. Opt. 42, 2085.CrossRefGoogle ScholarPubMed
Schwirzke, F., Schwarz, H. & Hora, H., eds. (1974). Laser Interaction and Related Plasma Phenomena. New York: Plenum.Google Scholar
Sharma, A.K. & Thareja, R.K. (2007). Anisotropic emission in laser-produced aluminum plasma in ambient nitrogen. Appl. Surf. Sci. 253, 31133121.CrossRefGoogle Scholar
Shen, X.K., Lu, Y.F., Gebre, T., Ling, H.A. & Han, Y.X. (2006). Optical emission in magnetically confined laser-induced breakdown spectroscopy. J. Appl. Phys. 100, 053303.CrossRefGoogle Scholar
Singh, R.K. & Narayan, J. (1990). Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model. Phys. Rev. B 41, 88438859.CrossRefGoogle ScholarPubMed
Sizyuk, V., Hassanein, A. & Sizyuk, T. (2007). Hollow laser self-confined plasma for extreme ultraviolet lithography and other applications. Laser Part. Beams 25, 143154.CrossRefGoogle Scholar
Thareja, R.K. & Shrama, A.K. (2006). Reactive pulsed laser ablation: Plasma studies. Laser Part. Beams 24, 311320.CrossRefGoogle Scholar
Trtica, M.S., Radak, B.B., Gakovic, B.M., Milovanowic, D.S., Batani, D. & Desai, T. (2009). Surface modifications of Ti6Al4V by a picosecond Nd:YAG laser. Laser Part. Beams 27, 8590.CrossRefGoogle Scholar