Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T04:26:15.239Z Has data issue: false hasContentIssue false

A Contribution to the Interpretation of 14C Groundwater Ages Considering the Example of a Partially Confined Sandstone Aquifer

Published online by Cambridge University Press:  18 July 2016

Lorenz Eichinger*
Affiliation:
GSF, Institut für Radiohydrometrie, D-8042 Neuherberg, West Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Previously described models and a new model were compared to determine the initial 14C content of groundwater in a partially-confined and unconfined sandstone aquifer (Fränkisches Albvorland, Germany). Isotope and chemical data were derived from samples of water, soil-CO2, and solid carbonates. The various 14C models lead to important differences in resulting groundwater ages.

From the relationship between 14C and 2H or 18O concentrations of groundwater, it must be assumed that chemical and/or physical carbon isotope exchange between the DIC and the solid carbonate has occurred provided the groundwater with lower 18O and 2H concentrations was generated during the Pleistocene. Groundwater ages deduced from 14C and 39Ar concentrations showed discrepancies which can be explained if carbon isotope exchange between DIC and solid carbonate as well as mixing of recent and fossil waters is considered.

Type
II. Hydrology
Copyright
Copyright © The American Journal of Science 

References

Andres, G and Geyh, M A, 1970, Untersuchungen über den Grundwasserhaushalt im überdeckten Sandsteinkeuper mit Hilfe der 14C- und 3H-Wasseranalysen: Wasserwirtschaft, 60, no 8, p 259263.Google Scholar
Eichinger, L, 1981, Bestimmung des Alters von Grundwässern mit Kohlenstoff-14: Messung und Interpretation der Grundwässer des Fränkischen Albvorlandes: Ph D, Univ Munich, 193 P.Google Scholar
Fontes, J C and Garnier, J M, 1979, Determination of the initial 14C activity of the total dissolved carbon: a review of the existing models and a new approach: Water Resources Research, v 15, p 399413.CrossRefGoogle Scholar
Geyh, M A, 1973, On the determination of the initial 14C content in groundwater in On the determination of the initial 14C content in groundwater.Google Scholar
Ingerson, E and Pearson, F J Jr, 1964, Estimation of age and rate of motion of groundwater by the 14C method, in Recent researches in the fields of hydrosphere, atmosphere and nuclear geochemistry: Tokyo, Maruzen, p 263283.Google Scholar
Loosli, H H and Oeschger, H, 1979, Argon-39, carbon-14 and krypton-85 measurements in groundwater samples, in Isotope Hydrology: Vienna, IAEA, p 931947.Google Scholar
Mook, W G, 1976, The dissolution-exchange model for dating groundwater with carbon-14, in Interpretation of environmental and hydrochemical data on groundwater hydrology: Vienna, IAEA, p 213225.Google Scholar
Mook, W G, 1980, Carbon-14 in hydrological studies, in Fritz, P and Fontes, J Ch, eds, Handbook of environmental isotope geochemstry, Vol 1: Amsterdam, Elsevier Sci, p 4974.Google Scholar
Mozeto, A A, 1981, Carbon isotope exchange in aqueous systems: A field and laboratory investigation: Ph D, Univ Waterloo, Canada, 185 P.Google Scholar
Münnich, K O, 1957, Messung des 14C-Gehalts von hartem Grundwasser, Naturwissenschaften v 44, p 3239.CrossRefGoogle Scholar
Reardon, E J and Fritz, P, 1978, Computer modelling of groundwater 13C and 14C isotope composition: Jour Hydrol, v 36, p 201224.CrossRefGoogle Scholar
Rietzler, J, 1979, Zur Hydrogeologie des Raumes südöstlich von Nürnberg unter besonderer Berücksichtigung der Gradabteilungsblätter 6533 Röthenbach, 6633 Feucht und 6733 Allersberg: Ph D, Univ Munich, 183 P.Google Scholar
Rudioff, H v, 1980, Die Klima-Entwicklung in den letzten Jahrhunderten im mitteleuropäischen Raum (mit einem Rückblick auf die postglaziale Periode), in Die Klima-Entwicklung in den letzten Jahrhunderten im mitteleuropäischen Raum (mit einem Rückblick auf die postglaziale Periode),.Google Scholar
Salvamoser, J, 1982, 85Kr im Grundwasser-Meßmethodik, Modellüberlegungen und Anwendungen auf natürliche Grundwassersysteme: Ph D, Univ Munich, 126 P.Google Scholar
Vogel, J C, 1970, 14C-Dating of groundwater, in Isotope Hydrology: Vienna, IAEA, p 225240.Google Scholar
Wigley, T M L, Plummer, L N and Pearson, F J, 1978, Mass transfer and carbon isotope evolution in natural water systems: Geochim et Cosmochim Acta, v 42, p 1171139.CrossRefGoogle Scholar