Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T20:04:03.029Z Has data issue: false hasContentIssue false

The control system regulating breathing in man

Published online by Cambridge University Press:  17 March 2009

D. J. C. Cunningham
Affiliation:
University Laboratory of Physiology, Oxford

Extract

This review takes the regulation of breathing in man as an example of a highly developed and much studied control system in higher mammals.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asmussen, E. (1967). Exercise and the regulation of ventilation. In Physiology of Muscular Exercise (ed. Chapman, C. B.), pp. 132–45. Circulation Res. XX, XXI, Suppl. 1.Google Scholar
Asmussen, E. & Chiodi, H. (1941). The effect of hypoxemia on ventilation and circulation in man. Am. J. Physiol. 132, 426–36.CrossRefGoogle Scholar
Asmussen, E. & Nielsen, M. (1946). Studies on the regulation of respiration in heavy work. Acta phyiol. scand. 12, 171–88.CrossRefGoogle Scholar
Asmussen, E. & Nielsen, M. (1957). Ventilatory response to CO2 during work at normal and at low oxygen tensions. Acta physiol. scand. 39, 2735.CrossRefGoogle ScholarPubMed
Asmussen, E. & Nielsen, M. (1958). Pulmonary ventilation and effect of oxygen breathing in heavy exercise. Acta physiol. scand. 43, 365–78.Google Scholar
Bainton, C. R. & Mitchell, R. A. (1966). Posthyperventilation apnea in awake man. J. appl. Phys. 21, 411–15.Google ScholarPubMed
Band, D. M., Cameron, I. R. & Semple, S. J. G. (1969). Effect of different methods of CO2 administration on oscillations of arterial pH in the cat. J. appl. Phys. 26, 268–73.Google ScholarPubMed
Band, D. M., Cameron, I. R. & Semple, S. J. G. (1970). The effect on respiration of abrupt changes in carotid artery pH and Pco2 in the cat. J. Physiol., Lond. 211, 479–94.CrossRefGoogle ScholarPubMed
Band, D. M., Saunders, K. B. & Wolff, C. B. (1971). The relation between chemoreceptor discharge and respiratory fluctuation of arterial pH in the anaesthetised cat. J. Physiol., Lond. 218, 73P.Google Scholar
Band, D. M. & Wolff, C. B. (1973). The effect of hypoxia on the respiratory fluctuations in chemoreceptor discharge in the cat. J. Physiol., Lond. 234, 71P.Google ScholarPubMed
Bannister, R. G. & Cunningham, D. J. C. (1954). The effects on the respiration and performance during exercise of adding oxygen to the inspired air. J. Physiol. 125, 118–37.Google Scholar
Baxter, I. G. & Pearce, J. W. (1951). Simultaneous measurement of pulmonary arterial flow and pressure using condenser manometers. J. Physiol. 115, 410–29.CrossRefGoogle ScholarPubMed
Bhattacharyya, N. K., Cunningham, D. J. C., Goode, R. C., Howson, M. G. & Lloyd, B. B. (1970). Hypoxia, ventilation, Pco2 and exercise. Resp. Physiol. 9, 329–47.CrossRefGoogle ScholarPubMed
Biscoe, T. J. (1971). Carotid body: structure and function. Physiol. Rev. 51, 427–95.CrossRefGoogle ScholarPubMed
Biscoe, T. J., Lall, A. & Sampson, S. R. (1970). Electron microscopic and electrophysiological studies on the carotid body following intracranial section of the glossopharyngeal nerve. J. Physiol., Lond. 208, 133–52.CrossRefGoogle ScholarPubMed
Biscoe, T. J. & Purves, M. J. (1965). Carotid chemoreceptor and cervical sympathetic activity during passive hind limb exercise in the anaesthetized cat. J. Physiol., Lond. 178, 4344P.Google Scholar
Biscoe, T. J. & Purves, M. J. (1967). Observations on the rhythmic variation in the cat carotid body chemoreceptor activity which has the same period as respiration. J. Physiol., Lond. 190, 389–42.Google Scholar
Biscoe, T. J., Purves, M. J. & Sampson, S. R. (1970). The frequency of nerve impulses in single carotid body chemoreceptor afferent fibres recorded in vivo with intact circulation. J. Physiol, Lond. 208, 121–31.CrossRefGoogle ScholarPubMed
Black, A. M. S., Goodman, M. W., Nail, B. S., Rao, P. S. & Torrance, R. W. (1973). The significance of the timing of chemoreceptor impulses for their effect upon respiration. Acta neurobiol. exper. 33, 139–47.Google ScholarPubMed
Black, A. M. S., McCloskey, D. I. & Torrance, R. W. (1971). The responses of carotid body chemoreceptors in the cat to sudden changes of hypercapnic and hypoxic stimuli. Resp. Physiol. 13, 3649.CrossRefGoogle ScholarPubMed
Black, A. M. S. & Torrance, R. W. (1967). Chemoreceptor effects in the respiratory cycle. J. Physiol. 189, 5961P.Google ScholarPubMed
Black, A. M. S. & Torrance, R. W. (1971). Respiratory oscillations in chemoreceptor discharge in the control of breathing. Resp. Physiol. 13, 221–37.Google Scholar
Boushey, H. A. & Richardson, P. S. (1973). The reflex effects of intra-laryngeal carbon dioxide on the pattern of breathing. J. Physiol., Lond. 228, 181–92.CrossRefGoogle Scholar
Bouverot, P., Flandrois, R., Puccinelli, R. & Dejours, P. (1965). Étude du rôle des chémorécepteurs artériels dans la regulation de la respiration pulmonaire chez le chien éveillé. Archs mt. Pharmacodyn. Ther. 157, 253–71.Google Scholar
Chalazonitis, N. (1968). Intracellular P02 control on excitability and synaptic activability in Aplysia and Helix identifiable giant neurones. Ann. N.Y. Acad. Sci. 147, 419–59.Google Scholar
Chapman, C. B. (ed.) (1967). Physiology of Muscular Exercise. Circulation Res. xx, xxi, Suppl. 1.Google Scholar
Cherniack, N. S., Edelman, N. H. & Lahiri, S. (1971). Hypoxia and hypercapnia as respiratory stimulants and depressants. Resp. Physiol. II, 113–26.Google Scholar
Clark, F. J. & Von Euler, C. (1972). On the regulation of depth and rate of breathing. J. Physiol., Lond. 222, 267–95.CrossRefGoogle ScholarPubMed
Cohen, P. J., Alexander, S. C., Smith, T. C., Reivich, M. & Wollman, H. (1967). Effect of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man. J. Appl. Physiol. 23, 183–9.Google Scholar
Comroe, J. H. & Schmidt, C. F. (1938). The part played by reflexes from the carotid body in the chemical regulation of respiration in the dog. Am. J. Physiol. 121, 7597.Google Scholar
Cormack, R. S., Cunningham, D. J. C. & Gee, J. B. L. (1956). The effects of hypercapnia and acapnia on the respiratory response to acute want of oxygen in man. J. Physiol., Lond. 133, 4748P.Google Scholar
Cormack, R. S., Cunningham, D. J. C. & Gee, J. B. L. (1957). The effect of carbon dioxide on the respiratory response to want of oxygen in man. Q. Jl exp. Physiol. 42, 303–19.CrossRefGoogle ScholarPubMed
Crosfill, M. L. & Widdicombe, J. G. (1961). Physical characteristics of the chest and lungs and the work of breathing in different mammalian species. J. Physiol., Lond. 158, 114.Google Scholar
Cunningham, D. J. C. (1963). Some quantitative aspects of the regulation of human respiration in exercise. Br. med. Bull. 19, 2530.CrossRefGoogle ScholarPubMed
Cunningham, D. J. C. (1974). Integrative aspects of the regulation of breathing: a personal view. In International Review of Science, Section, I, Physiology (ed. Guyton, A. C.); Vol. II, Respiration (ed. Widdicombe, J. G.), pp. 303–68. Lancaster: Medical and Technical Publishing.Google Scholar
Cunningham, D. J. C., Elliott, D. H., Lloyd, B. B., Millier, J. P. & Young, J. M. (1965 b). A comparison of the effects of oscillating and steady alveolar partial pressures of oxygen and carbon dioxide on the pulmonary ventilation. J. Physiol. Lond. 179, 498508.CrossRefGoogle ScholarPubMed
Cunningham, D. J. C., Goode, R. C. & Lloyd, B. B. (1967). Depression of ventilation after carbon monoxide. J. Physiol., Lond. 191, 4445P.Google Scholar
Cunningham, D. J. C., Hey, E. N. & Lloyd, B. B. (1958). The effect of intravenous infusion of noradrenline on the respiratory response to carbon dixoide in man. Q. Jl exp. Physiol. 43, 394–9.CrossRefGoogle Scholar
Cunningham, D. J. C., Hey, E. N., Patrick, J. M. & Lloyd, B. B. (1963). The effect of noradrenaline infusion on the relation between pulmonary ventilation and alveolar P o2 and P co2 in man. Ann. N. Y. Acad. Sci. 109, 756–70.CrossRefGoogle ScholarPubMed
Cunningham, D. J. C., Howson, M. G. & Pearson, S. B. (1973). The respiratory effects in man of altering the time profile of alveolar CO2 and O2 within each respiratory cycle. J. Physiol., Lond. 234, 128.CrossRefGoogle Scholar
Cunningham, D. J. C., Lloyd, B. B., Miller, J. P. & Young, J. M. (1965). The time course of human ventilation after transient changes in PA, CO2, at two values of PA, O2. J. Physiol., Lond. 179, 6870P.Google Scholar
Cunningham, D. J. C., Lloyd, B. B. & Spurr, D. (1966 a). The relationship between the increase in breathing during the first respiratory cycle in exercise and the prevailing background of chemical stimulation. J. Physiol., Lond. 185, 7375P.Google Scholar
Cunningham, D. J. C., Lloyd, B. B. & Spurr, D. (1966 b). Doubts about the ‘anaerobic work… substance’ as a stimulus to breathing in exercise. J. Physiol., Lond. 186, 110–11 P.Google Scholar
Cunningham, D. J. C., & O'Riordan, L. H. (1957). The effect of a rise in the temperature of the body on the respiratory response to carbon dioxide at rest. Q. Jl exp. Physiol. 42, 329–45.Google Scholar
Cunningham, D. J. C., Patrick, J. M. & Lloyd, B. B. (1964). The respiratory response of man to hypoxia. In Oxygen in the Animal Organism (ed. Dickens, F. and Neil, E.), pp. 277–91. Oxford: Pergamon Press.CrossRefGoogle Scholar
Cunningham, D. J. C., Pearson, S. B. & Gardner, W. N. (1973). Regulation of respiratory frequency and tidal volume at various ventilations. Archo Fisiol. 69, Suppl., 433–46.Google Scholar
Cunningham, D. J. C., Spurr, D. & Lloyd, B. B. (1968). Ventilatory drive in hypoxic exercise. In Arterial Chemoreceptors (ed. Torrance, R. W.), pp. 301–23. Oxford: Blackwell.Google Scholar
Davies, R. O. & Lahiri, S. (1973). Absence of carotid chemoreceptor response during hypoxic exercise in the cat. Resp. Physiol. 18, 92100.CrossRefGoogle ScholarPubMed
Defares, J. G. (1964). Principles of feedback control and their application to the respiratory control system. In Handbook of Physiology, section 3, Respiration, vol. I (ed. Fenn, W. O. and Rahn, H.), pp. 649–80. Washington, D.C.: American Physiological Society.Google Scholar
Dejours, P. (1959). La régulation de la ventilation au cours de l'exercice musculaire chez l'homme. J. Physiol., Paris 51, 163261.Google Scholar
Dejours, P. (1964). Control of respiration in muscular exercise. Handbook of Physiology, section 3, Respiration, vol. I (ed. Fenn, W. O. and Rahn, H.), pp. 631–48. Washington, D.C.: American Physiological Society.Google Scholar
Dejours, P., Labrousse, Y., Raynaud, J., Girard, F. & Teillac, A. (1958). Stimulus oxygène de la ventilation au repos et au cours de l'exercice musculaire, à basse altitude (50 m), chez l'homme. Revue fr. Étud. clin. biol. 3, 105–23.Google Scholar
Dejours, P., Lefrançois, R., Flandrois, R. & Teillac, A. (1960). Autonomie des stimulus ventilatoires oxygène gaz carbonique et neurogénique de l'exercice musculaire. J. Physiol., Paris 52, 63–4.Google Scholar
Douglas, C. G. & Haldane, J. S. (1909 a). The regulation of normal breathing J. Physiol., Lond. 38, 420–40.CrossRefGoogle ScholarPubMed
Douglas, C. G. & Haldane, J. S. (1909 b). The causes of periodic or Cheyne–Stokes breathing. J. Physiol., Lond. 38, 401–19.Google Scholar
Douglas, C. G., Haldane, J. S., Henderson, Y. & Schneider, E. C. (1913). Physiological observations made on Pike's Peak, Colorado, with special reference to adaptation to low barometic pressures. Phil. Trans. R. Soc. Lond. B 203, 185318.Google Scholar
DuBois, A. B., Britt, A. G. & Fenn, W. O. (1952). Alveolar CO2 during the respiratory cycle. J. appl. Physiol. 4, 535–48.Google Scholar
DuBois, R. M. & Yamamoto, W. S. (1969). Modification of ventilatory response of cross-perfused rat by stirring the blood stream. Fedn Proc. Fedn Am. Socs exp. Biol. 28, 338.Google Scholar
Duffin, J. (1972). A mathematical model of the chemorefiex control of ventilation. Resp. Physiol. 15, 277301.CrossRefGoogle ScholarPubMed
Dutton, R. E., Fitzgerald, R. S. & Gross, N. (1968). Ventilatory response to square-wave forcing of carbon dioxide at the carotid bodies. Resp. Physiol. 4, 101–8.Google Scholar
Dutton, R. E., Ghatak, P. K. & Davies, D. G. (1969). Regulation of respiration during ramp forcing of the carotid chemoreceptors with hypoxic blood. Fedn Proc. Fedn Am. Socs exp. Biol. 28, 338.Google Scholar
Dutton, R. E. & Permutt, S. (1968). Ventilatory responses to transient changes in carbon dioxide. In Arterial Chemoreceptors (ed. Torrance, R. W.), pp. 373–86. Oxford: Blackwell.Google Scholar
Edelman, N. H., Epstein, P., Lahiri, S. & Cherniack, N. S. (1973). Ventilatory responses to transient hypoxia and hypercapnia in man. Resp. Physiol. 17, 302–14.CrossRefGoogle ScholarPubMed
Von Euler, C. (1973). Time-dependent changes in responsiveness to inflations and deflations of the lungs during inspiration and expiration: their significance for the control of depth and rate of breathing. Archo Fisiol. 69, suppl., 424–32.Google Scholar
Euler, C. Von & Söderberg, U. (1952). Slow potentials in the respiratory centres. J. Physiol., Lond. 118, 555–64.CrossRefGoogle Scholar
Euler, U. S. Von, Liljestrand, G. & Zotterman, Y. (1939). The excitation mechanism of the chemoreceptors of the carotid body. Skand. Arch. Physiol. 83, 132–52.Google Scholar
Eyzaguirre, C. & Lewin, J. (1961). Chemoreceptor activity of the carotid body of the cat. J. Physiol. 159, 222–37.Google Scholar
Fenner, A. & Berndt, J. (1970). Ventilatory response to oscillating and non-oscillating PA, CO2 in the anaesthetized cat. Pflügers Arch. ges. Physiol. 318, 108–16.CrossRefGoogle Scholar
Filley, G. F., Beckwitt, H. J., Reeves, J. T. & Mitchell, R. S. (1968). Chronic obstructive broncho-pulmonary disease. II. Oxygen transport in two clinical types. Am. J. Med. 44, 2638.Google Scholar
Fink, B. R., Hanks, E. C., Ngai, S. H. & Papper, E. M. (1963). Central regulation of respiration during anesthesia and wakefulness. Ann. N. Y. Acad. Sci. 109, 892–9.Google Scholar
Fitzgerald, M. P. (1914). Further observations on the changes in the breathing and the blood at various high altitudes. Proc. Roy. Soc. Lond. B 88, 248–58.Google Scholar
Fitzgerald, R. S. & Parks, D. C. (1971). Effect of hypoxia on carotid chemoreceptor response to carbon dioxide in cats. Resp. Physiol. 12, 218–29.Google Scholar
Fitzgerald, R. S., Gross, N. & Dutton, R. E. (1968). Ventilatory responses to transient acidic and hypercapnic vertebral artery infusions. Resp. Physiol. 4, 387–95.Google Scholar
Floyd, W. F. & Neil, E. (1952). The influence of the sympathetic innervation of the carotid bifurcation on chemoreceptor and baroreceptor activity in the cat. Archs int. Pharmacodyn. Ther. 91, 230–9.Google Scholar
Gabel, R. A., Kronenberg, R. S. & Severinghaus, J. W. (1973). Vital capacity breaths of 5% or 15% CO2 in N2 or O2 to test carotid chemosensitivity. Resp. Physiol. 17, 195208.CrossRefGoogle ScholarPubMed
Gesell, R., Lapides, J. & Levin, M. (1940). The interaction of central and peripheral chemical control of breathing. Am. J. Physiol. 130, 155–70.CrossRefGoogle Scholar
Goode, R. C. (1968). Some factors affecting respiration in man. D.Phil. Thesis, Oxford University.Google Scholar
Goode, R. C., Brown, E. B. Jr, Howson, M. G. & Cunningham, D. J. C. (1969). Respiratory effects of breathing down a tube. Resp. Physiol. 6, 343–59.Google Scholar
Goodman, N. (1972). Efferent control of arterial chemoreceptors. J. Physiol., Lond. 225, 31–2 P.Google Scholar
Gray, J. S. (1946). The multiple factor theory of the control of respiratory ventilation. Science, N.Y. 103, 739–44.CrossRefGoogle ScholarPubMed
Grodins, F. S. (1950). Analysis of factors concerned in regulation of breathing in exercise. Physiol. Rev. 30, 220–39.Google Scholar
Grodins, F. S., Buell, J. & Bart, A. J. (1967). Mathematical analysis and digital simulation of the respiratory control system. J. appl. Physiol. 22, 260–76.Google Scholar
Guz, A., Noble, M. I. M., Widdicombe, J. G., Trenchard, D. & Mushin, W. W. (1966). The effect of bilateral block of vagus and glossopharyngeal nerves on the ventilatory response to CO2 of conscious man. Resp. Physiol. I, 206–10.Google Scholar
Haldane, J. S., Meakins, J. C. & Priestley, J. G. (1919). The respiratory response to anoxaemia. J. Physiol., Lond. 52, 420–32.Google Scholar
Haldane, J. S. & Priestley, J. G. (1905). The regulation of the lungventilation. J. Physiol., Lond. 32, 225–66.CrossRefGoogle ScholarPubMed
Hey, E. N., Lloyd, B. B., Cunningham, D. J. C., Jukes, M. G. M. & Bolton, D. P. G. (1966). Effects of various respiratory stimuli on the depth and frequency of breathing in man. Resp. Physiol. I, 193205.Google Scholar
Hilton, S. M. & Joels, N. (1964). Facilitation of chemoreceptor reflexes during the defence reaction. J. Physiol., Lond. 176, 20–2 P.Google Scholar
Honda, Y., Natsui, T., Hasumura, N. & Nakamura, K. (1963). Threshold PCO2 for respiratory system in acute hypoxia of dogs. J. appl. Physiol. 18, 1053–6.Google Scholar
Hornbein, T. F., Griffo, Z. J. & Roos, A. (1961). Quantitation of chemoreceptor activity: interrelation of hypoxia and hypercapnia. J. Neuro. physiol. 24, 561–8.Google ScholarPubMed
Hornbein, T. F., Roos, A. & Griffo, Z. J. (1961). Transient effect of sudden mild hypoxia on respiration. J. appl. Physiol. 26, 1114.CrossRefGoogle Scholar
Horsfield, K., Cumming, G. & Hicken, P. (1966). A morphologic study of airway disease using bronchial casts. Am. Rev. resp. Dis. 93, 900–6.Google Scholar
Joels, N. & White, H. (1968). The contribution of the arterial chemoreceptors to the stimulation of respiration by adrenaline and nor-adrenaline in the cat. J. Physiol., Lond. 197, 124.Google Scholar
Kao, F. F. (1963). An experimental study of the pathways involved in exercise hyperpnoea employing cross-circulation techniques. In The Regulation of Human Respiration (ed. Cunningham, D. J. C. and Lloyd, B. B.), pp. 461502. Oxford: Blackwell.Google Scholar
Kao, F. F., Lahiri, S., Wang, C. & Mel, S. S. (1967). Ventilation and cardiac output in exercise. Physiology of Muscular Exercise (ed. Chapman, C. B.), pp. 179–91. Circulation Res. xx, xxi, Suppl. I.Google Scholar
Kellogg, R. H. (1968). Altitude acclimatization, a historical introduction emphasizing the regulation of breathing. Physiologist II, 3757.Google Scholar
Knox, C. K. (1973). Characteristics of inflation and deflation reflexes during expiration in the cat. J. Neurophysiol. 36, 284–95.Google Scholar
Krogh, A. & Lindhard, J. (1913). On the average composition of the alveolar air and its variations during the respiratory cycle. J. Physiol., Lond. 47, 431–45.CrossRefGoogle Scholar
Kronenberg, R., Hamilton, F. N., Gabel, R., Hichkey, R., Read, D. J. C. & Severinghaus, J. W. (1972). Comparison of three methods for quantitating response to hypoxia in man. Resp. Physiol. 16, 109–24.Google Scholar
Lambertsen, C. J., Gelfand, R. & Kemp, R. A. (1965). Dynamic response characteristics of several CO2-reactive components of the respiratory control system. Cerebrospinal Fluid and the Regulation of Ventilation (ed. Brooks, C. McC., Kao, F. F. and Lloyd, B. B.), pp. 211–40. Oxford: Blackwell.Google Scholar
Lambertsen, C. J., Hall, P., Wollman, H. & Goodman, M. W. (1963). Quantitative interactions of increased Po2 and Pco2 upon respiration in man. Ann. N.Y. Acad. Sci. 109, 731–41.Google Scholar
Lee, K. D., Mayou, R. A. & Torrance, R. W. (1964). The effect of blood pressure upon chemoreceptor discharge to hypoxia, and the modification of this effect by the sympathetic-adrenal system. Q. Jl exp. Physiol. 49, 171–83.Google Scholar
Lefrançois, R. & Dajours, P. (1964). Étude des relations entre stimulus ventilatoire gaz carbonique et stimulus ventilatoires neurogéniques de l'exercice musculaire chez l'homme. Revue fr. Étud. clin. biol. 9, 498505.Google Scholar
Leigh, J. (1972). Evaluation of a two-breath CO2 test as a measure of arterial chemoreflex sensitivity to CO2 in man. J. Physiol., Lond. 224, 28P.Google Scholar
Leitner, L.-M., Pàges, B., Puccinelli, R. & Dejours, P. (1965). Étude simultanée de la ventilation et des décharges des chémorécepteurs du glomus carotidien chez le Chat. II. Au cours d'inhalations bréves d'anhydride carbonique. Archs int. Pharmacodyn. Ther. 154, 427433.Google Scholar
Leusen, I. (1954). Chemosensitivity of the respiratory center. Influence of CO2 in the cerebral ventricles on respiration. Am. J. Physiol. 176, 3944.CrossRefGoogle ScholarPubMed
Leusen, I., Demeester, G. & Lacroix, E. (1967). Lactate and pyruvate in the brain of rats during changes in acid-base balance. Archs Int. Physiol. Biochim. 75, 310–24.Google ScholarPubMed
Lipscomb, W. T. & Boyarsky, L. L. (1972). Neurophysiological investigations of medullary chemosensitive areas of respiration. Resp. Physiol. 16, 362–76.CrossRefGoogle ScholarPubMed
Lloyd, B. B. (1966). The interactions between hypoxia and other ventilatory stimuli. Proc. int. Symp. cardiovasc. respir. Effects Hypoxia (ed. Hatcher, J. D. and Jennings, D. B.), pp. 146–65. Basel: Karger.Google Scholar
Lloyd, B. B. & Cunningham, D. J. C. (1963). Quantitative approach to the regulation of human respiration. In The Regulation of Human Respiration (ed. Cunningham, D. J. C. and Lloyd, B. B.), pp. 331–49. Oxford: Blackwell.Google Scholar
Lloyd, B. B., Jukes, M. G. M. & Cunningham, D. J. C. (1958). The relation between alveolar oxygen pressure and the respiratory response to carbon dioxide in man. Q. Jl exp. Physiol. 43, 214–27.CrossRefGoogle ScholarPubMed
Loeschcke, H. H. (1965). A concept of the role of intracranial chemosensitivity in respiratory control. Cerebrospinal Fluid and the Regulation of Ventilation (ed. Brooks, C. McC., Kao, F. F. and Lloyd, B. B.), pp. 183207. Oxford: Blackwell.Google Scholar
Loeschcke, H. H. & Gertz, K. H. (1958). Einfluss des O2-Druckes in der Einatmungsluft auf die Atemtätigkeit des Menschen, geprüft unter Konstanthaltung des alveolaren CO2-Druckes. Pflügers Arch. ges. Physiol. 267, 460–77.CrossRefGoogle Scholar
Loeschcke, H. H., Koepchen, H. P. & Gertz, K. H. (1958). Über den Einfluss von Wasserstoffionenkonzentration und CO2-Druck im Liquor cerebrospinalis auf die Atmung. Pflügers Arch. ges. Physiol. 266, 569–85.Google Scholar
Loeschcke, H. H. & Mitchell, R. A. (1963). Properties and localisation of intracranial chemosensitivity. In The Regulation of Human Respiration (ed. Cunningham, D. J. C. and Lloyd, B. B.), pp. 243–56. Oxford: Blackwell.Google Scholar
Lugliani, R., Whipp, B. J., Seard, C. & Wasserman, K. (1971). Effects of bilateral carotid body resection on ventilatory control at rest and during exercise in man. New Engl. J. Med. 285, 1105–11.Google Scholar
McCloskey, D. I. (1968). Carbon dioxide and the carotid body. In Arterial Chemoreceptors (ed. Torrance, R. W.), pp. 279–92. Oxford: Blackwell.Google Scholar
McCloskey, D. I. & Mitchell, J. H. (1972). Reflex cardiovascular and respiratory responses originating in exercising muscle. J. Physiol., Lond. 224, 173–86.Google Scholar
Majcherczyk, S. & Willshaw, P. (1973). Inhibition of peripheral chemoreceptor activity during superfusion with an alkaline c.s.f. of the ventral brainstem surface of the cat. J. Physiol., Lond. 231, 26P.Google ScholarPubMed
Marsh, R. H. K., Lyen, K. R., McPherson, G. A. D., Pearson, S. B. & Cunningham, D. J. C. (1973). Breath-by-breath effects of imposed alternate-breath oscillations of alveolar CO2. Resp. Physiol. 18, 8091.Google Scholar
Matell, G. (1963). Time-courses of changes in ventilation and arterial gas tensions in man induced by moderate exercise. Acta physiol. scand. 58, Suppl. 206.Google Scholar
Miescher-Rüsch, F. (1885). Bemerkungen zur Lehre von den Athembewegungen. Arch. Anat. Physiol. 355–80.Google Scholar
Milhorn, H. T. (1966). The Application of Control Theory to Physiological Systems. Philadelphia: W. B. Saunders.Google Scholar
Milhorn, H. R. & Guyton, A. C. (1965). An analog computer analysis of Cheyne–Stokes breathing. J. appl. Physiol. 20, 328–33.Google Scholar
Miller, J. P., Cunningham, D. J. C., Lloyd, B. B. & Young, J. M. (1974). The transient respiratory effects in man of sudden changes in alveolar CO2 in hypoxia and in high oxygen. Resp. Physiol. (in the Press).CrossRefGoogle Scholar
Mills, E. & Jöbsis, F. F. (1970). Simultaneous measurement of cytochrome a 3 reduction and chemoreceptor afferent activity in the carotid body. Nature, Lond. 225, 1147–9.Google Scholar
Mitchell, R. A. (1965). The regulation of respiration in metabolic acidosis and alkalosis. In Cerebrospinal Fluid and the Regulation of Ventilation (ed. Brooks, C. McC.Kao, F. F. and Lloyd, B. B.), pp. 109–31. Oxford: Blackwell.Google Scholar
Mitchell, R. A., Bainton, C. R. & Edelist, G. (1966). Posthyperventilation apnea in awake dogs during metabolic acidosis and hypoxia. J. appl. Physiol. 21, 1363–7.CrossRefGoogle ScholarPubMed
Mitchell, R. A., Loeschcke, H. H., Massion, W. H. & Severinghaus, J. W. (1963). Respiratory responses mediated through superficial chemosensitive areas on the medulla. J. appl. Physiol. 18, 523–33.CrossRefGoogle ScholarPubMed
Myhre, K. & Lange, Andersen K. (1971). Respiratory responses to static muscular work. Resp. Physiol. 12, 7789.Google Scholar
Neil, E. (1963). Discussion. In The Regulation of Human Respiration, (ed. Cunningham, D. J. C. and Lloyd, B. B.), p. 201. Oxford: Blackwell.Google Scholar
Neil, E. & O'Regan, R. G. (1971). Efferent and afferent impulse activity recorded from few-fibre preparations of otherwise intact sinus and aortic nerves. J. Physiol. 215, 3347.Google Scholar
Nielsen, M. (1936). Untersuchungen über die Atemregulation beim Menschen, besonders mit Hinblick auf die Art des chemischen Reizes. Skand. Arch. Physiol. 74, Suppl. 10, 87208.Google Scholar
Nielsen, M. & Smith, H. (1952). Studies on the regulation of respiration in acute hypoxia. Acta physiol. stand. 24, 293313.Google Scholar
Pappenheimer, J. R., Fencl, V., Heisey, S. R. & Held, D. (1965). Role of cerebral fluids in control of respiration as studied in unanesthetized goats. Am. Jl Physiol. 208, 436–50.Google Scholar
Pearson, S. B. & Cunningham, D. J. C. (1973). Some observations on the relation between ventilation, tidal volume and frequency in man in various steady and transient states. Acta Neurobiol. exper. 33, 177–88.Google Scholar
Perkins, J. F., Buchthal, A., Domizi, D. B., Schafer, J. & Shapiro, S. (1966). Lack of influence of changes in arterial P co2, on ventilatory response to a constant stimulus to the carotid bodies. Fedn Proc. Fedn Am. Socs exp. Biol. 25, 389.Google Scholar
Purves, M. J. (1966 a). Fluctuations of arterial oxygen tension which have the same period as respiration. Resp. Physiol. 1, 281–96.Google Scholar
Purves, M. J. (1966 b). The effect of eliminating fluctuations of gas tensions in arterial blood on carotid chemoreceptor activity and respiration. J. Physiol., Lond. 186, 63P.Google Scholar
Rahn, H. (1955). Permanent residents at altitude within the United States. Studies in Respiratory Physiology, 2nd ser. WADC Technical Report 55–357.Google Scholar
Raub, W. F. (1965). Doctoral dissertation, University of Pennsylvania. Cited by Edwards, M. W. and Yamamoto, W. S., in Physiological Controls and Regulation (ed. Yamamoto, W. S. and Brobeck, J. R.), pp. 158–80. Philadelphia: W. B. Saunders.Google Scholar
Riedstra, J. W. (1963). Influence of central and peripheral P co2 (pH) on the ventilatory response to hypoxic chemoreceptor stimulation. Acta physiol. pharmacol. neerl. 12, 407–52.Google Scholar
Schläfke, M. E., See, W. R. & Loeschcke, H. H. (1970). Ventilatory response to alterations of H+ ion concentration in small areas of the ventral medullary surface. Resp. Physiol. 10, 198212.Google Scholar
Severinghaus, J. W. (1972). Hypoxic respiratory drive and its loss during chronic hypoxia. Clin. Physiol. 2, 5779.Google Scholar
Sørensen, S. C. (1971). The chemical control of ventilation. Acta physiol. scand. 82, Suppl. 361.Google Scholar
Sørensen, S. C. & Cruz, J. C. (1969). Ventilatory response to a single breath of CO2 in O2 in normal man at sea level and high altitude. J. appl. Physiol. 27, 186–90.CrossRefGoogle Scholar
Torrance, R. W. (1968) Prolegomena. Arterial Chemoreceptors (ed. Torrance, R. W.). Oxford: Blackwell.Google Scholar
Torrance, R. W. (1974). Arterial chemoreceptors. In International Review of Science, Section I, Physiology (ed. Guyton, A. C.); vol. II, Respiration (ed. Widdicombe, J. G.), pp. 247–70. Lancaster: Medical and Technical Publishing.Google Scholar
Wade, J. G., Larson, C. P., Hickey, R. F., Ehrenfeld, W. K. & Severinghaus, J. W. (1970). Effect of carotid endarterectomy on carotid chemoreceptor and baroreceptor function. New Engl. J. Med. 282, 823–9.Google Scholar
Ward, S. A., Howson, M. G., Petersen, E.Strange & Cunningham, D. J. C. (1974). (In preparation.)Google Scholar
Well, J. V., Byrne-Quinn, E., Sodal, I. E., Kline, J. S., McCullough, R. E. & Filley, G. F. (1972). Augmentation of chemosensitivity during mild exercise in normal man. J. appl. Physiol. 33, 813–19.CrossRefGoogle Scholar
Wiemer, W., Winterstein, H., Kiwull, P., Ott, N. (1965). Interaction of intracranial and extracranial respiratory mechanisms. In Cerebrospinal Fluid and the Regulation of Ventilation (ed. Brooks, C. McC., Kao, F. F. and Lloyd, B. B.), pp. 303–21. Oxford: Blackwell.Google Scholar
Yamamoto, W. S. (1960). Mathematical analysis of the time course of alveolar CO2. J. appl. Physiol. 15, 215–19.Google Scholar
Yamamoto, W. S. & Edwards, McI. W. (1960). Homeostasis of carbon dioxide during intravenous infusion of carbon dioxide. J. appl. Physiol. 15, 807–18.Google Scholar
Young, J. M. (1970). Some factors affecting respiration in man. D. Phil. Thesis, Oxford University.Google Scholar