Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-30T06:41:49.783Z Has data issue: false hasContentIssue false

Structure of Water

Published online by Cambridge University Press:  17 March 2009

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Review Article
Copyright
Copyright © Cambridge University Press 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aung, S., Pitzer, R. M. & Chan, S. I. (1968). Approximate Hartree-Fock wavefunctions, one-electron properties, and electronic structure of the water molecule. J. chetn. Phys. 49, 2071.Google Scholar
Badger, R. M. & Bauer, S. H. (1937). Spectroscopic studies of the hydrogen bond. II. The shift of the O–H vibrational frequency in the formation of the hydrogen bond. J. chem. Phys. 5, 839.CrossRefGoogle Scholar
Bernal, J. D. & Fowler, R. H. (1933). A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. chem. Phys. 1. 515Google Scholar
Bjerrum, N.(1950). Om isens struktur. Fys. Tidsskr. no. 3–4, 71.Google Scholar
Brundle, C. R. & Turner, D. W. (1968). High resolution molecular photoelectron spectroscopy. II. Water and deuteriumoxide. Proc. R. Soc. A 307, 27.Google Scholar
Burgman, J. O., Sciesinski, J. & Sköld, K. (1968). Proton dynamics in water and ice studied by inelastic scattering of slow neutrons. Physiol. Rev. 170, 809.Google Scholar
Clementi, E., Mehl, J. & Von Niessen, W. (1971). Study of electronic structure of molecules. XII. Hydrogen bridges in the guanine-cytosine pair and in the dimeric form of formic acid. J. chem. Phys. 54, 508.Google Scholar
Cross, P. C., Burnham, J. & Leighton, P. A. (1937). The Raman spectrum and structure of water. J. Am. chem. Soc. 59, 1134.Google Scholar
Danford, M. D. & Levy, H. A. (1962). The structure of water at room temperature. J. Am. chem. Soc. 84, 3965.CrossRefGoogle Scholar
Dorsey, N. E. (1940). Properties of Ordinary Water-Substance. New York, 1940, reprint 1968.Google Scholar
Drost-Hansen, W. (1965). Anomalies in the properties of water. First International Symp. on Water Desalination. Washington, D.C.: Repr. Inst. of Marine Science, University of Miami.Google Scholar
Eisenberg, D. & Kauzmann, W. (1969). The Structure and Properties of Water. Oxford: Clarendon Press.Google Scholar
Forslind, E. (1952). A theory of water. Acta polytech. scand. 115, 9.Google Scholar
Forslind, E. (1953). Water association and hydrogels. Proc. Second Int. Congr. on Rheology, Oxford, p. 50. London: Butterworths Scientific Publications.Google Scholar
Forslind, E. (1966). Rheology in Svensk Naturvetenskap, 1966. Yearly Report of the Swedish Natural Science Research Council.Google Scholar
Forslind, E. (1971). Nuclear magnetic resonance wide line studies of water sorption and hydrogen bonding in cellulose. NMR-Basic Principles and Progress, vol. 4. Berlin-Heidelberg-New York: Springer.Google Scholar
Frank, H. S. (1970). The structure of ordinary water. Science, N. Y. 169, 635.CrossRefGoogle ScholarPubMed
Frank, H. S. & Wen, W. Y. (1957). Ion-solvent interaction. Structural aspects of ion-solvent interaction in aqueous solutions: a suggested picture of water structure. Discuss. Faraday Soc. 24, 113.Google Scholar
Garrett, B. S. (1954). The crystal structure of oxalic acid dihydrate and alpha iodic acid as determined by neutron diffraction. Dissertation, University of Arkansas.CrossRefGoogle Scholar
Grahn, R. A. (1958). Theoretical investigation of the role of polarization in the formation of hydrogen bonds. Ark. Fys. 15, 257.Google Scholar
Hankins, D., Moskowitz, J. W. & Stillinger, F. H. (1970). Water molecule investigations. J. chem. Phys. 53, 4544.CrossRefGoogle Scholar
Hertz, H. G. (1970). Some structural aspects of the rotational and translational diffusion in liquids. Z. Elektrochem. 74, 666.Google Scholar
Hofacker, L. (1958). Zur Theorie der Wasserstoffbrückenbindung. Z. Naturf. 13a, 1044.Google Scholar
Kamb, B. (1971). Hydrogen-bond stereochemistry and ‘Anomalous Water’. Science, N.Y. 172, 231.CrossRefGoogle ScholarPubMed
Kollman, P. A. & Allen, L. C. (1969). Theory of the hydrogen bond: electronic structure and properties of the water dimer. J. chem. Phys. 51, 3286.Google Scholar
Landolt-Börnstein, Roth Tabellen (1912), p. 289. Table 8, Gerlach: Wahre Änderung des spezif. Volumens von Lösungen mit der Temperatur. Springer, 4. ed., Berlin, 1912.Google Scholar
Lindner, P. & Forslind, E. (1971). To be published.Google Scholar
Magat, M. (1935). Sur un changement des propriétés de l'eau aux environs de 40 °C. J. Phys. Radium, Paris 6, 179.Google Scholar
Martin-Löf, S. & Söremark, Chr. (1969). A phase transformation associated with the loss of water in crystalline α-D-glucose monohydrate at 37 °C, and some aspects on secondary thermal transitions in carbohydrates. Swedish Forest Products Res. Lab., Stockholm.Google Scholar
Megaw, H. D. (1934). Cell dimensions of ordinary and heavy ice. Nature, Lond. 134, 900.CrossRefGoogle Scholar
Moccia, R. (1964). One-Center Basis Set Scf Mo's. Ill, H2O, H2S and HCl. J. chem. Phys. 40, 2186.CrossRefGoogle Scholar
Moireau, M.-CL. & Veillard, A. (1968). Quantum mechanical calculations on barriers to internal rotation. II. The Borazane molecule BH3–NH3. Theor. Chim. Acta, 11, 344.CrossRefGoogle Scholar
Morokuma, K. & Pedersen, L. (1968). Molecular-orbital studies of hydrogen bonds. An ab initio calculation for Dimeric H2O. J. chem. Phys. 48, 3275.Google Scholar
Narten, A. H. & Levy, H. A. (1969). Observed diffraction pattern and proposed models of liquid water. Science, N. Y. 165, 447.CrossRefGoogle ScholarPubMed
Neumann, D. & Moskowitz, J. W. (1968). One-electron properties of near– Hartree–Fock wavefunctions. I. Water. J. chem. Phys. 49, 2056.Google Scholar
Owston, P. G. & Lonsdale, K. (1948). The crystalline structure of ice. J. Glaciol. 1, 118.Google Scholar
Pauling, L. (1935). The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. chem. Soc. 57, 2680.Google Scholar
Pauling, L. (1945). The Nature of the Chemical Bond. 2nd ed. New York: Cornell University Press.Google Scholar
Peterson, S. W. & Levy, H. A. (1957). A single-crystal neutron diffraction study of heavy ice. Acta Crystallogr. 10, 70.Google Scholar
Samoilov, O. Ya (1946). The coordination number in the structure of certain liquids. Zh. fiz. Khim. 20, 1411.Google Scholar
Tait, M. J. & Franks, F. (1971). Water in biological systems. Nature, Lond. 230, 91.CrossRefGoogle ScholarPubMed
Thomas, I. L. & Joy, H. W. (1970). Protonic structure of molecules. II. Methodology, center-of-mass transformation, and the structure of methane, ammonia and water. Phys. Rev. A 2, 1200.Google Scholar
Thurn, H. (1963). Eine neue Methode zur Messung der inneren Dämpfung von festen und flüssigen Stoffen. Z. Materialprüfung 5, 114.Google Scholar
Walrafen, G. E. (1966). Raman spectral studies of the effects of temperature on water and electrolyte solutions. J. chem. Phys. 44, 1546.CrossRefGoogle Scholar
Walrafen, G. E. (1968). Structure of water. In Hydrogen-Bonded Solvent Systems (ed. A. K. Carrington and P. Jones), p. 9. London: Taylor and Francis.Google Scholar
Wollan, E. O., Davidson, W. L. & Shull, C. G. (1949). Neutron diffraction study of the structure of ice. Phys. Rev. 75, 1348.CrossRefGoogle Scholar