Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T13:18:30.532Z Has data issue: false hasContentIssue false

Childhood trauma moderates schizotypy-related brain morphology: analyses of 1182 healthy individuals from the ENIGMA schizotypy working group

Published online by Cambridge University Press:  20 October 2023

Yann Quidé*
Affiliation:
NeuroRecovery Research Hub, School of Psychology, UNSW Sydney, Sydney, NSW, Australia Neuroscience Research Australia, Randwick, NSW, Australia
Oliver J. Watkeys
Affiliation:
Neuroscience Research Australia, Randwick, NSW, Australia School of Clinical Medicine, Discipline of Psychiatry and Mental Health, UNSW Sydney, Sydney, NSW, Australia
Emiliana Tonini
Affiliation:
Neuroscience Research Australia, Randwick, NSW, Australia School of Clinical Medicine, Discipline of Psychiatry and Mental Health, UNSW Sydney, Sydney, NSW, Australia
Dominik Grotegerd
Affiliation:
Institute for Translational Psychiatry, University of Münster, Münster, Germany
Udo Dannlowski
Affiliation:
Institute for Translational Psychiatry, University of Münster, Münster, Germany
Igor Nenadić
Affiliation:
Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
Tilo Kircher
Affiliation:
Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
Axel Krug
Affiliation:
Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany Department of Psychiatry and Psychotherapy, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
Tim Hahn
Affiliation:
Institute for Translational Psychiatry, University of Münster, Münster, Germany
Susanne Meinert
Affiliation:
Institute for Translational Psychiatry, University of Münster, Münster, Germany Institute for Translational Neuroscience, University of Münster, Münster, Germany
Janik Goltermann
Affiliation:
Institute for Translational Psychiatry, University of Münster, Münster, Germany
Marius Gruber
Affiliation:
Institute for Translational Psychiatry, University of Münster, Münster, Germany Department for Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
Frederike Stein
Affiliation:
Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
Katharina Brosch
Affiliation:
Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
Adrian Wroblewski
Affiliation:
Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
Florian Thomas-Odenthal
Affiliation:
Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
Paula Usemann
Affiliation:
Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
Benjamin Straube
Affiliation:
Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
Nina Alexander
Affiliation:
Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
Elisabeth J. Leehr
Affiliation:
Institute for Translational Psychiatry, University of Münster, Münster, Germany
Jochen Bauer
Affiliation:
Clinic for Radiology, University Hospital Münster, Münster, Germany
Nils R. Winter
Affiliation:
Institute for Translational Psychiatry, University of Münster, Münster, Germany
Lukas Fisch
Affiliation:
Institute for Translational Psychiatry, University of Münster, Münster, Germany
Katharina Dohm
Affiliation:
Institute for Translational Psychiatry, University of Münster, Münster, Germany
Wulf Rössler
Affiliation:
Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany Laboratory of Neuroscience (LIM 27), Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
Lukasz Smigielski
Affiliation:
Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland Department of Child and Adolescent Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
Pamela DeRosse
Affiliation:
Department of Psychology, Stony Brook University, Stony Brook, NY, USA
Ashley Moyett
Affiliation:
Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
Josselin Houenou
Affiliation:
Université Paris Est Créteil, Mondor University Hospitals, DMU IMPACT, APHP, INSERM U955 Team “Translational NeuroPsychiatry”, Créteil, France Fondation FondaMental, Créteil, France NeuroSpin neuroimaging platform, UNIACT Lab, PsyBrain team, CEA Saclay, Gif-Sur-Yvette, France
Marion Leboyer
Affiliation:
Université Paris Est Créteil, Mondor University Hospitals, DMU IMPACT, APHP, INSERM U955 Team “Translational NeuroPsychiatry”, Créteil, France Fondation FondaMental, Créteil, France
James Gilleen
Affiliation:
Division of Nursing, Midwifery and Social Work, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK School of Psychology, University of Roehampton, London, UK
Sophia I. Thomopoulos
Affiliation:
Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
Paul M. Thompson
Affiliation:
Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
André Aleman
Affiliation:
Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
Gemma Modinos
Affiliation:
Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
Melissa J. Green
Affiliation:
Neuroscience Research Australia, Randwick, NSW, Australia School of Clinical Medicine, Discipline of Psychiatry and Mental Health, UNSW Sydney, Sydney, NSW, Australia
*
Corresponding author: Yann Quidé; Email: y.quide@unsw.edu.au; yannquide@gmail.com

Abstract

Background

Schizotypy represents an index of psychosis-proneness in the general population, often associated with childhood trauma exposure. Both schizotypy and childhood trauma are linked to structural brain alterations, and it is possible that trauma exposure moderates the extent of brain morphological differences associated with schizotypy.

Methods

We addressed this question using data from a total of 1182 healthy adults (age range: 18–65 years old, 647 females/535 males), pooled from nine sites worldwide, contributing to the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Schizotypy working group. All participants completed both the Schizotypal Personality Questionnaire Brief version (SPQ-B), and the Childhood Trauma Questionnaire (CTQ), and underwent a 3D T1-weighted brain MRI scan from which regional indices of subcortical gray matter volume and cortical thickness were determined.

Results

A series of multiple linear regressions revealed that differences in cortical thickness in four regions-of-interest were significantly associated with interactions between schizotypy and trauma; subsequent moderation analyses indicated that increasing levels of schizotypy were associated with thicker left caudal anterior cingulate gyrus, right middle temporal gyrus and insula, and thinner left caudal middle frontal gyrus, in people exposed to higher (but not low or average) levels of childhood trauma. This was found in the context of morphological changes directly associated with increasing levels of schizotypy or increasing levels of childhood trauma exposure.

Conclusions

These results suggest that alterations in brain regions critical for higher cognitive and integrative processes that are associated with schizotypy may be enhanced in individuals exposed to high levels of trauma.

Type
Original Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abu-Akel, A., & Shamay-Tsoory, S. (2011). Neuroanatomical and neurochemical bases of theory of mind. Neuropsychologia, 49(11), 29712984. doi: 10.1016/j.neuropsychologia.2011.07.012CrossRefGoogle ScholarPubMed
Alvarez, J. A., & Emory, E. (2006). Executive function and the frontal lobes: A meta-analytic review. Neuropsychology Review, 16(1), 1742. doi: 10.1007/s11065-006-9002-xCrossRefGoogle ScholarPubMed
Andreou, C., & Borgwardt, S. (2020). Structural and functional imaging markers for susceptibility to psychosis. Molecular Psychiatry, 25(11), 27732785. doi: 10.1038/s41380-020-0679-7CrossRefGoogle ScholarPubMed
Baker, L. M., Williams, L. M., Korgaonkar, M. S., Cohen, R. A., Heaps, J. M., & Paul, R. H. (2013). Impact of early vs. Late childhood early life stress on brain morphometrics. Brain Imaging & Behavior, 7(2), 196203. doi: 10.1007/s11682-012-9215-yCrossRefGoogle ScholarPubMed
Baldwin, J. R., Reuben, A., Newbury, J. B., & Danese, A. (2019). Agreement between prospective and retrospective measures of childhood maltreatment: A systematic review and meta-analysis. JAMA Psychiatry, 76(6), 584593. doi: 10.1001/jamapsychiatry.2019.0097CrossRefGoogle ScholarPubMed
Bernstein, D. P., Stein, J. A., Newcomb, M. D., Walker, E., Pogge, D., Ahluvalia, T., … Zule, W. (2003). Development and validation of a brief screening version of the Childhood Trauma Questionnaire. Child Abuse & Neglect, 27(2), 169190. doi: 10.1016/s0145-2134(02)00541-0CrossRefGoogle ScholarPubMed
Calem, M., Bromis, K., McGuire, P., Morgan, C., & Kempton, M. J. (2017). Meta-analysis of associations between childhood adversity and hippocampus and amygdala volume in non-clinical and general population samples. Neuroimage Clinical, 14, 471479. doi: 10.1016/j.nicl.2017.02.016CrossRefGoogle ScholarPubMed
Cassiers, L. L. M., Sabbe, B. G. C., Schmaal, L., Veltman, D. J., Penninx, B., & Van Den Eede, F. (2018). Structural and functional brain abnormalities associated with exposure to different childhood trauma subtypes: A systematic review of neuroimaging findings. Frontiers in Psychiatry, 9, 329. doi: 10.3389/fpsyt.2018.00329CrossRefGoogle ScholarPubMed
Claridge, G. S. (1985). Origins of mental illness : Temperament, deviance, and disorder. Oxford, New York, NY, USA: Basil Blackwell.Google Scholar
Claridge, G. S. (1997). Schizotypy: Implications for illness and health. Oxford, England, UK: Oxford University Press.CrossRefGoogle Scholar
Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ, USA: Lawrence Erlbaum Associates Publishers.Google Scholar
Craig, A. D. (2009). How do you feel – now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10(1), 5970. doi: 10.1038/nrn2555CrossRefGoogle Scholar
Dannlowski, U., Stuhrmann, A., Beutelmann, V., Zwanzger, P., Lenzen, T., Grotegerd, D., … Kugel, H. (2012). Limbic scars: Long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biological Psychiatry, 71(4), 286293. doi: 10.1016/j.biopsych.2011.10.021CrossRefGoogle ScholarPubMed
Debbané, M., Badoud, D., Balanzin, D., & Eliez, S. (2013). Broadly defined risk mental states during adolescence: Disorganization mediates positive schizotypal expression. Schizophrenia Research, 147(1), 153156. doi: 10.1016/j.schres.2013.03.012CrossRefGoogle ScholarPubMed
de Boer, M. K., Castelein, S., Wiersma, D., Schoevers, R. A., & Knegtering, H. (2015). The facts about sexual (Dys)function in schizophrenia: An overview of clinically relevant findings. Schizophrenia Bulletin, 41(3), 674686. doi: 10.1093/schbul/sbv001CrossRefGoogle ScholarPubMed
Derome, M., Tonini, E., Zoller, D., Schaer, M., Eliez, S., & Debbané, M. (2020a). Developmental trajectories of cortical thickness in relation to schizotypy during adolescence. Schizophrenia Bulletin, 46(5), 13061316. doi: 10.1093/schbul/sbaa020CrossRefGoogle ScholarPubMed
Derome, M., Zoller, D., Modinos, G., Schaer, M., Eliez, S., & Debbane, M. (2020b). Developmental trajectories of subcortical structures in relation to dimensional schizotypy expression along adolescence. Schizophrenia Research, 218, 7684. doi: 10.1016/j.schres.2020.02.005CrossRefGoogle ScholarPubMed
DeRosse, P., Nitzburg, G. C., Ikuta, T., Peters, B. D., Malhotra, A. K., & Szeszko, P. R. (2015). Evidence from structural and diffusion tensor imaging for frontotemporal deficits in psychometric schizotypy. Schizophrenia Bulletin, 41(1), 104114. doi: 10.1093/schbul/sbu150CrossRefGoogle ScholarPubMed
Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., … Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968980. doi: 10.1016/j.neuroimage.2006.01.021CrossRefGoogle ScholarPubMed
de Wit, S., Wierenga, L. M., Oranje, B., Ziermans, T. B., Schothorst, P. F., van Engeland, H., … Durston, S. (2016). Brain development in adolescents at ultra-high risk for psychosis: Longitudinal changes related to resilience. Neuroimage Clinical, 12, 542549. doi: 10.1016/j.nicl.2016.08.013CrossRefGoogle ScholarPubMed
Edmiston, E. E., Wang, F., Mazure, C. M., Guiney, J., Sinha, R., Mayes, L. C., & Blumberg, H. P. (2011). Corticostriatal-limbic gray matter morphology in adolescents with self-reported exposure to childhood maltreatment. Archives of Pediatrics & Adolescent Medicine, 165(12), 10691077. doi: 10.1001/archpediatrics.2011.565CrossRefGoogle ScholarPubMed
Everaerd, D., Klumpers, F., Zwiers, M., Guadalupe, T., Franke, B., van Oostrom, I., … Tendolkar, I. (2016). Childhood abuse and deprivation are associated with distinct sex-dependent differences in brain morphology. Neuropsychopharmacology, 41(7), 17161723. doi: 10.1038/npp.2015.344CrossRefGoogle ScholarPubMed
Eysenck, H. J. (1998). Dimensions of personality. New Brunswick, NJ: Transaction Publishers.Google Scholar
Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., … Dale, A. M. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341355. doi: 10.1016/s0896-6273(02)00569-xCrossRefGoogle ScholarPubMed
Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D. H., … Dale, A. M. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14(1), 1122. doi: 10.1093/cercor/bhg087CrossRefGoogle ScholarPubMed
Fisher, H. L., Craig, T. K., Fearon, P., Morgan, K., Dazzan, P., Lappin, J., … Morgan, C. (2011). Reliability and comparability of psychosis patients' retrospective reports of childhood abuse. Schizophrenia Bulletin, 37(3), 546553. doi: 10.1093/schbul/sbp103CrossRefGoogle ScholarPubMed
Gama, C. M. F., Portugal, L. C. L., Goncalves, R. M., de Souza Junior, S., Vilete, L. M. P., Mendlowicz, M. V., … Pereira, M. G. (2021). The invisible scars of emotional abuse: A common and highly harmful form of childhood maltreatment. BMC Psychiatry, 21(1), 156. doi: 10.1186/s12888-021-03134-0CrossRefGoogle ScholarPubMed
Gayer-Anderson, C., Reininghaus, U., Paetzold, I., Hubbard, K., Beards, S., Mondelli, V., … Morgan, C. (2020). A comparison between self-report and interviewer-rated retrospective reports of childhood abuse among individuals with first-episode psychosis and population-based controls. Journal of Psychiatric Research, 123, 145150. doi: 10.1016/j.jpsychires.2020.02.002CrossRefGoogle ScholarPubMed
Goodale, M. A., & Westwood, D. A. (2004). An evolving view of duplex vision: Separate but interacting cortical pathways for perception and action. Current Opin in Neurobiology, 14(2), 203211. doi: 10.1016/j.conb.2004.03.002CrossRefGoogle ScholarPubMed
Grant, P., Green, M. J., & Mason, O. J. (2018). Models of schizotypy: The importance of conceptual clarity. Schizophrenia Bulletin, 44(suppl_2), S556S563. doi: 10.1093/schbul/sby012CrossRefGoogle ScholarPubMed
Haber, S. N., & Knutson, B. (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1), 426. doi: 10.1038/npp.2009.129CrossRefGoogle ScholarPubMed
Haidl, T. K., Hedderich, D. M., Rosen, M., Kaiser, N., Seves, M., Lichtenstein, T., … Koutsouleris, N. (2023). The non-specific nature of mental health and structural brain outcomes following childhood trauma. Psychological Medicine, 53(3), 10051014. doi: 10.1017/S0033291721002439CrossRefGoogle ScholarPubMed
Harricharan, S., McKinnon, M. C., & Lanius, R. A. (2021). How processing of sensory information from the internal and external worlds shape the perception and engagement with the world in the aftermath of trauma: Implications for PTSD. Frontiers in Neuroscience, 15, 625490. doi: 10.3389/fnins.2021.625490CrossRefGoogle ScholarPubMed
Hart, H., & Rubia, K. (2012). Neuroimaging of child abuse: A critical review. Frontiers in Human Neuroscience, 6, 52. doi: 10.3389/fnhum.2012.00052CrossRefGoogle ScholarPubMed
Hayes, A. F., & Cai, L. (2007). Using heteroskedasticity-consistent standard error estimators in OLS regression: An introduction and software implementation. Behavior Research Methods, 39(4), 709722. doi: 10.3758/bf03192961CrossRefGoogle ScholarPubMed
Herzog, J. I., Thome, J., Demirakca, T., Koppe, G., Ende, G., Lis, S., … Schmahl, C. (2020). Influence of severity of type and timing of retrospectively reported childhood maltreatment on female amygdala and hippocampal volume. Scientific Reports, 10(1), 1903. doi: 10.1038/s41598-020-57490-0CrossRefGoogle ScholarPubMed
Kirschner, M., Hodzic-Santor, B., Antoniades, M., Nenadic, I., Kircher, T., Krug, A., … Modinos, G. (2022). Cortical and subcortical neuroanatomical signatures of schizotypy in 3004 individuals assessed in a worldwide ENIGMA study. Molecular Psychiatry, 27, 11671176. doi: 10.1038/s41380-021-01359-9CrossRefGoogle Scholar
Kuhn, S., Schubert, F., & Gallinat, J. (2012). Higher prefrontal cortical thickness in high schizotypal personality trait. Journal of Psychiatric Research, 46(7), 960965. doi: 10.1016/j.jpsychires.2012.04.007CrossRefGoogle ScholarPubMed
Kwapil, T. R., & Barrantes-Vidal, N. (2015). Schizotypy: Looking back and moving forward. Schizophrenia Bulletin, 41(Suppl 2), S366S373. doi: 10.1093/schbul/sbu186CrossRefGoogle ScholarPubMed
Leek, J. T., Johnson, W. E., Parker, H. S., Fertig, E. J., Jaffe, A. E., Zhang, Y., … Torres, L. C. (2019). sva: Surrogate Variable Analysis. R package version 3.34.0.Google Scholar
Lewandowski, K. E., Barrantes-Vidal, N., Nelson-Gray, R. O., Clancy, C., Kepley, H. O., & Kwapil, T. R. (2006). Anxiety and depression symptoms in psychometrically identified schizotypy. Schizophrenia Research, 83(2-3), 225235. doi: 10.1016/j.schres.2005.11.024CrossRefGoogle ScholarPubMed
Lieberman, M. D., Straccia, M. A., Meyer, M. L., Du, M., & Tan, K. M. (2019). Social, self, (situational), and affective processes in medial prefrontal cortex (MPFC): Causal, multivariate, and reverse inference evidence. Neuroscience & Biobehavioral Reviews, 99, 311328. doi: 10.1016/j.neubiorev.2018.12.021CrossRefGoogle ScholarPubMed
Lim, L., Radua, J., & Rubia, K. (2014). Gray matter abnormalities in childhood maltreatment: A voxel-wise meta-analysis. American Journal of Psychiatry, 171(8), 854863. doi: 10.1176/appi.ajp.2014.13101427CrossRefGoogle ScholarPubMed
Long, J. A. (2021). interactions: Comprehensive, User-Friendly Toolkit for Probing Interactions. R package version 1.1.5. Retrieved from https://cran.r-project.org/package=interactionsGoogle Scholar
McGrath, J. J., Saha, S., Lim, C. C. W., Aguilar-Gaxiola, S., Alonso, J., Andrade, L. H., … Collaborators, W. H. O. W. M. H. S. (2017). Trauma and psychotic experiences: Transnational data from the World Mental Health Survey. The British Journal of Psychiatry, 211(6), 373380. doi: 10.1192/bjp.bp.117.205955CrossRefGoogle ScholarPubMed
McLaughlin, K. A., & Lambert, H. K. (2017). Child trauma exposure and psychopathology: Mechanisms of risk and resilience. Current Opinion in Psychology, 14, 2934. doi: 10.1016/j.copsyc.2016.10.004CrossRefGoogle ScholarPubMed
Meehl, P. E. (1990). Toward an integrated theory of schizotaxia, schizotypy, and schizophrenia. Journal of Personality Disorders, 4(1), 199. doi: 10.1521/pedi.1990.4.1.1CrossRefGoogle Scholar
Meller, T., Ettinger, U., Grant, P., & Nenadic, I. (2020). The association of striatal volume and positive schizotypy in healthy subjects: Intelligence as a moderating factor. Psychological Medicine, 50(14), 23552363. doi: 10.1017/S0033291719002459CrossRefGoogle ScholarPubMed
Mesulam, M. M. (1998). From sensation to cognition. Brain, 121(Pt 6), 10131052. doi: 10.1093/brain/121.6.1013CrossRefGoogle ScholarPubMed
Motzkin, J. C., Philippi, C. L., Wolf, R. C., Baskaya, M. K., & Koenigs, M. (2015). Ventromedial prefrontal cortex is critical for the regulation of amygdala activity in humans. Biological Psychiatry, 77(3), 276284. doi: 10.1016/j.biopsych.2014.02.014CrossRefGoogle ScholarPubMed
Newbury, J. B., Arseneault, L., Caspi, A., Moffitt, T. E., Odgers, C. L., Belsky, D. W., … Fisher, H. L. (2022). Association between genetic and socioenvironmental risk for schizophrenia during upbringing in a UK longitudinal cohort. Psychological Medicine, 52(8), 1527–1537. doi: 10.1017/S0033291720003347CrossRefGoogle Scholar
Popovic, D., Ruef, A., Dwyer, D. B., Antonucci, L. A., Eder, J., Sanfelici, R., … Consortium, P. (2020). Traces of trauma: A multivariate pattern analysis of childhood trauma, brain structure, and clinical phenotypes. Biological Psychiatry, 88(11), 829842. doi: 10.1016/j.biopsych.2020.05.020CrossRefGoogle ScholarPubMed
Quidé, Y., Cohen-Woods, S., O'Reilly, N., Carr, V. J., Elzinga, B. M., & Green, M. J. (2018). Schizotypal personality traits and social cognition are associated with childhood trauma exposure. British Journal of Clinical Psychology, 57(4), 397419. doi: 10.1111/bjc.12187CrossRefGoogle ScholarPubMed
Quidé, Y., Tonini, E., Watkeys, O. J., Carr, V. J., & Green, M. J. (2021). Schizotypy, childhood trauma and brain morphometry. Schizophrenia Research, 238, 7381. doi: 10.1016/j.schres.2021.09.021CrossRefGoogle ScholarPubMed
Radua, J., Vieta, E., Shinohara, R., Kochunov, P., Quidé, Y., & Green, M. J., … Collaborators, E. C. (2020). Increased power by harmonizing structural MRI site differences with the ComBat batch adjustment method in ENIGMA. Neuroimage, 218, 116956. doi: 10.1016/j.neuroimage.2020.116956CrossRefGoogle ScholarPubMed
Raine, A. (1991). The SPQ: A scale for the assessment of schizotypal personality based on DSM-III-R criteria. Schizophrenia Bulletin, 17(4), 555564. doi: 10.1093/schbul/17.4.555CrossRefGoogle ScholarPubMed
Raine, A., & Benishay, D. (1995). The SPQ-B: A brief screening instrument for schizotypal personality disorder. Journal of Personality Disorders, 9(4), 346355. doi: 10.1521/pedi.1995.9.4.346CrossRefGoogle Scholar
R Core Team. (2021). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/Google Scholar
RStudio Team. (2021). RSTudio: Integrated development environment for R. Boston, MA, USA. Retrieved from http://www.rstudio.com/Google Scholar
Shepherd, A. M., Laurens, K. R., Matheson, S. L., Carr, V. J., & Green, M. J. (2012). Systematic meta-review and quality assessment of the structural brain alterations in schizophrenia. Neuroscience & Biobehavioral Reviews, 36(4), 13421356. doi: 10.1016/j.neubiorev.2011.12.015CrossRefGoogle ScholarPubMed
Stevens, F. L., Hurley, R. A., & Taber, K. H. (2011). Anterior cingulate cortex: Unique role in cognition and emotion. Journal of Neuropsychiatry and Clinical Neuroscience, 23(2), 121125. doi: 10.1176/appi.neuropsych.23.2.121. doi: 10.1176/jnp.23.2.jnp121CrossRefGoogle ScholarPubMed
Teicher, M. H., & Samson, J. A. (2013). Childhood maltreatment and psychopathology: A case for ecophenotypic variants as clinically and neurobiologically distinct subtypes. American Journal of Psychiatry, 170(10), 11141133. doi: 10.1176/appi.ajp.2013.12070957CrossRefGoogle ScholarPubMed
Teicher, M. H., Samson, J. A., Anderson, C. M., & Ohashi, K. (2016). The effects of childhood maltreatment on brain structure, function and connectivity. Nature Reviews Neuroscience, 17(10), 652666. doi: 10.1038/nrn.2016.111CrossRefGoogle ScholarPubMed
Tonini, E., Quidé, Y., Kaur, M., Whitford, T. J., & Green, M. J. (2021a). Structural and functional neural correlates of schizotypy: A systematic review. Psychological Bulletin, 147(8), 828866. doi: 10.1037/bul0000260CrossRefGoogle ScholarPubMed
Tonini, E., Quidé, Y., Whitford, T. J., & Green, M. J. (2022). Cumulative sociodemographic disadvantage partially mediates associations between childhood trauma and schizotypy. British Journal of Clinical Psychology, 61(2), 444464. doi: 10.1111/bjc.12349CrossRefGoogle ScholarPubMed
Varese, F., Smeets, F., Drukker, M., Lieverse, R., Lataster, T., Viechtbauer, W., … Bentall, R. P. (2012). Childhood adversities increase the risk of psychosis: A meta-analysis of patient-control, prospective- and cross-sectional cohort studies. Schizophrenia Bulletin, 38(4), 661671. doi: 10.1093/schbul/sbs050CrossRefGoogle ScholarPubMed
Velikonja, T., Fisher, H. L., Mason, O., & Johnson, S. (2015). Childhood trauma and schizotypy: A systematic literature review. Psychological Medicine, 45(5), 947963. http://dx.doi.org/10.1017/S0033291714002086CrossRefGoogle ScholarPubMed
Walter, E. E., Fernandez, F., Snelling, M., & Barkus, E. (2016). Genetic consideration of schizotypal traits: A review. Frontiers in Psychology, 7, 1769. doi: 10.3389/fpsyg.2016.01769CrossRefGoogle ScholarPubMed
Walther, S., & Strik, W. (2012). Motor symptoms and schizophrenia. Neuropsychobiology, 66(2), 7792. doi: 10.1159/000339456CrossRefGoogle ScholarPubMed
Zeileis, A. (2004). Econometric computing with HC and HAC covariance matrix estimators. Journal of Statistical Software, 11(10), 117. doi: 10.18637/jss.v011.i10CrossRefGoogle Scholar
Zeileis, A., Köll, S., & Graham, N. (2020). Various versatile variances: An object-oriented implementation of clustered covariances in R. Journal of Statistical Software, 95(1), 136. doi: 10.18637/jss.v095.i01CrossRefGoogle Scholar
Supplementary material: File

Quidé et al. supplementary material

Quidé et al. supplementary material
Download Quidé et al. supplementary material(File)
File 208.3 KB