Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T06:35:56.777Z Has data issue: false hasContentIssue false

Catechol-O-methyltransferase Val158Met association with parahippocampal physiology during memory encoding in schizophrenia

Published online by Cambridge University Press:  13 December 2010

A. Di Giorgio
Affiliation:
Psychiatric Neuroscience Group, Department of Psychiatry and Neurology, University of Bari, Italy Psychiatric Liaison Service, IRCCS ‘Casa Sollievo della Sofferenza’, San Giovanni Rotondo, Italy Section of Neuroradiology, Department of Neuroscience, University of Catania, Italy
G. Caforio
Affiliation:
Psychiatric Neuroscience Group, Department of Psychiatry and Neurology, University of Bari, Italy
G. Blasi
Affiliation:
Psychiatric Neuroscience Group, Department of Psychiatry and Neurology, University of Bari, Italy
P. Taurisano
Affiliation:
Psychiatric Neuroscience Group, Department of Psychiatry and Neurology, University of Bari, Italy Section of Neuroradiology, IRCCS ‘Casa Sollievo della Sofferenza’, San Giovanni Rotondo, Italy
L. Fazio
Affiliation:
Psychiatric Neuroscience Group, Department of Psychiatry and Neurology, University of Bari, Italy
R. Romano
Affiliation:
Psychiatric Neuroscience Group, Department of Psychiatry and Neurology, University of Bari, Italy
G. Ursini
Affiliation:
Psychiatric Neuroscience Group, Department of Psychiatry and Neurology, University of Bari, Italy Mendel Lab, IRCCS ‘Casa Sollievo della Sofferenza’, San Giovanni Rotondo, Italy
B. Gelao
Affiliation:
Psychiatric Neuroscience Group, Department of Psychiatry and Neurology, University of Bari, Italy
L. Lo Bianco
Affiliation:
Psychiatric Neuroscience Group, Department of Psychiatry and Neurology, University of Bari, Italy
A. Papazacharias
Affiliation:
Psychiatric Neuroscience Group, Department of Psychiatry and Neurology, University of Bari, Italy
L. Sinibaldi
Affiliation:
Mendel Lab, IRCCS ‘Casa Sollievo della Sofferenza’, San Giovanni Rotondo, Italy
T. Popolizio
Affiliation:
Section of Neuroradiology, IRCCS ‘Casa Sollievo della Sofferenza’, San Giovanni Rotondo, Italy
A. Bellomo
Affiliation:
Section of Psychiatry and Clinical Psychology, University of Foggia, Italy
A. Bertolino*
Affiliation:
Psychiatric Neuroscience Group, Department of Psychiatry and Neurology, University of Bari, Italy Section of Neuroradiology, IRCCS ‘Casa Sollievo della Sofferenza’, San Giovanni Rotondo, Italy
*
*Address for correspondence: A. Bertolino, M.D., Ph.D., Dipartimento di Scienze Neurologiche e Psichiatriche, Università degli Studi di Bari, Piazza Giulio Cesare, 11, 70124 Bari, Italy. (Email: a.bertolino@psichiat.uniba.it)

Abstract

Background

Catechol-O-methyltransferase (COMT) Val158Met has been associated with activity of the mesial temporal lobe during episodic memory and it may weakly increase risk for schizophrenia. However, how this variant affects parahippocampal and hippocampal physiology when dopamine transmission is perturbed is unclear. The aim of the present study was to compare the effects of the COMT Val158Met genotype on parahippocampal and hippocampal physiology during encoding of recognition memory in patients with schizophrenia and in healthy subjects.

Method

Using blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI), we studied 28 patients with schizophrenia and 33 healthy subjects matched for a series of sociodemographic and genetic variables while they performed a recognition memory task.

Results

We found that healthy subjects had greater parahippocampal and hippocampal activity during memory encoding compared to patients with schizophrenia. We also found different activity of the parahippocampal region between healthy subjects and patients with schizophrenia as a function of the COMT genotype, in that the predicted COMT Met allele dose effect had an opposite direction in controls and patients.

Conclusions

Our results demonstrate a COMT Val158Met genotype by diagnosis interaction in parahippocampal activity during memory encoding and may suggest that modulation of dopamine signaling interacts with other disease-related processes in determining the phenotype of parahippocampal physiology in schizophrenia.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achim, AM, Lepage, M (2005). Episodic memory-related activation in schizophrenia: meta-analysis. British Journal of Psychiatry 187, 500509.CrossRefGoogle ScholarPubMed
Aleman, A, Hijman, R, de Haan, EH, Kahn, RS (1999). Memory impairment in schizophrenia: a meta-analysis. American Journal of Psychiatry 156, 13581366.CrossRefGoogle ScholarPubMed
Altshuler, LL, Casanova, MF, Goldberg, TE, Kleinman, JE (1990). The hippocampus and parahippocampus in schizophrenia, suicide, and control brains. Archives of General Psychiatry 47, 10291034.CrossRefGoogle ScholarPubMed
Arnsten, AF, Goldman-Rakic, PS (1998). Noise stress impairs prefrontal cortical cognitive function in monkeys: evidence for a hyperdopaminergic mechanism. Archives of General Psychiatry 55, 362368.CrossRefGoogle ScholarPubMed
Bertolino, A, Blasi, G (2009). The genetics of schizophrenia. Neuroscience 164, 288299.CrossRefGoogle ScholarPubMed
Bertolino, A, Caforio, G, Blasi, G, De Candia, M, Latorre, V, Petruzzella, V, Altamura, M, Nappi, G, Papa, S, Callicott, JH, Mattay, VS, Bellomo, A, Scarabino, T, Weinberger, DR, Nardini, M (2004). Interaction of COMT Val108/158 Met genotype and olanzapine treatment on prefrontal cortical function in patients with schizophrenia. American Journal of Psychiatry 161, 17981805.CrossRefGoogle Scholar
Bertolino, A, Caforio, G, Petruzzella, V, Latorre, V, Rubino, V, Dimalta, S, Torraco, A, Blasi, G, Quartesan, R, Mattay, VS, Callicott, JH, Weinberger, DR, Scarabino, T (2006 a). Prefrontal dysfunction in schizophrenia controlling for COMT Val(158)Met genotype and working memory performance. Psychiatry Research 147, 221226.CrossRefGoogle Scholar
Bertolino, A, Callicott, JH, Elman, I, Mattay, VS, Tedeschi, G, Frank, JA, Breier, A, Weinberger, DR (1998). Regionally specific neuronal pathology in untreated patients with schizophrenia: a proton magnetic resonance spectroscopic imaging study. Biological Psychiatry 43, 641648.CrossRefGoogle ScholarPubMed
Bertolino, A, Di Giorgio, A, Blasi, G, Sambataro, F, Caforio, G, Sinibaldi, L, Latorre, V, Rampino, A, Taurisano, P, Fazio, L, Romano, R, Douzgou, S, Popolizio, T, Kolachana, B, Nardini, M, Weinberger, DR, Dallapiccola, B (2008). Epistasis between dopamine regulating genes identifies a nonlinear response of the human hippocampus during memory tasks. Biological Psychiatry 64, 226234.CrossRefGoogle ScholarPubMed
Bertolino, A, Fazio, L, Di Giorgio, A, Blasi, G, Romano, R, Taurisano, P, Caforio, G, Sinibaldi, L, Ursini, G, Popolizio, T, Tirotta, E, Papp, A, Dallapiccola, B, Borrelli, E, Sadee, W (2009). Genetically determined interaction between the dopamine transporter and the D2 receptor on prefronto-striatal activity and volume in humans. Journal of Neuroscience 29, 12241234.CrossRefGoogle ScholarPubMed
Bertolino, A, Nawroz, S, Mattay, VS, Barnett, AS, Duyn, JH, Moonen, CT, Frank, JA, Tedeschi, G, Weinberger, DR (1996). Regionally specific pattern of neurochemical pathology in schizophrenia as assessed by multislice proton magnetic resonance spectroscopic imaging. American Journal of Psychiatry 153, 15541563.Google ScholarPubMed
Bertolino, A, Rubino, V, Sambataro, F, Blasi, G, Latorre, V, Fazio, L, Caforio, G, Petruzzella, V, Kolachana, B, Hariri, A, Meyer-Lindenberg, A, Nardini, M, Weinberger, DR, Scarabino, T (2006 b). Prefrontal-hippocampal coupling during memory processing is modulated by COMT Val158Met genotype. Biological Psychiatry 60, 12501258.CrossRefGoogle ScholarPubMed
Boyer, P, Phillips, JL, Rousseau, FL, Ilivitsky, S (2007). Hippocampal abnormalities and memory deficits: new evidence of a strong pathophysiological link in schizophrenia. Brain Research Reviews 54, 92112.CrossRefGoogle Scholar
Callicott, JH, Straub, RE, Pezawas, L, Egan, MF, Mattay, VS, Hariri, AR, Verchinski, BA, Meyer-Lindenberg, A, Balkissoon, R, Kolachana, B, Goldberg, TE, Weinberger, DR (2005). Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proceedings of the National Academy of Sciences USA 102, 86278632.CrossRefGoogle ScholarPubMed
Cannon, TD, Zorrilla, LE, Shtasel, D, Gur, RE, Gur, RC, Marco, EJ, Moberg, P, Price, RA (1994). Neuropsychological functioning in siblings discordant for schizophrenia and healthy volunteers. Archives of General Psychiatry 51, 651661.CrossRefGoogle ScholarPubMed
Carlsson, A (1988). The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1, 179186.CrossRefGoogle ScholarPubMed
Carlsson, A (2006). The neurochemical circuitry of schizophrenia. Pharmacopsychiatry 39 (Suppl. 1), S10S14.CrossRefGoogle ScholarPubMed
Chen, J, Lipska, BK, Halim, N, Ma, QD, Matsumoto, M, Melhem, S, Kolachana, BS, Hyde, TM, Herman, MM, Apud, J, Egan, MF, Kleinman, JE, Weinberger, DR (2004). Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. American Journal of Human Genetics 75, 807821.CrossRefGoogle ScholarPubMed
Danion, JM, Huron, C, Vidailhet, P, Berna, F (2007). Functional mechanisms of episodic memory impairment in schizophrenia. Canadian Journal of Psychiatry 52, 693701.CrossRefGoogle ScholarPubMed
Deicken, RF, Pegues, M, Amend, D (1999). Reduced hippocampal N-acetylaspartate without volume loss in schizophrenia. Schizophrenia Research 37, 217223.CrossRefGoogle ScholarPubMed
Di Giorgio, A, Blasi, G, Sambataro, F, Rampino, A, Papazacharias, A, Gambi, F, Romano, R, Caforio, G, Rizzo, M, Latorre, V, Popolizio, T, Kolachana, B, Callicott, JH, Nardini, M, Weinberger, DR, Bertolino, A (2008). Association of the SerCys DISC1 polymorphism with human hippocampal formation gray matter and function during memory encoding. European Journal of Neuroscience 28, 21292136.CrossRefGoogle ScholarPubMed
Di Giorgio, A, Sambataro, F, Bertolino, A (2009). Functional imaging as a tool to investigate the relationship between genetic variation and response to treatment with antipsychotics. Current Pharmaceutical Design 15, 25602572.CrossRefGoogle ScholarPubMed
Drabant, EM, Hariri, AR, Meyer-Lindenberg, A, Munoz, KE, Mattay, VS, Kolachana, BS, Egan, MF, Weinberger, DR (2006). Catechol O-methyltransferase val158met genotype and neural mechanisms related to affective arousal and regulation. Archives of General Psychiatry 63, 13961406.CrossRefGoogle ScholarPubMed
Egan, MF, Goldberg, TE, Kolachana, BS, Callicott, JH, Mazzanti, CM, Straub, RE, Goldman, D, Weinberger, DR (2001). Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proceedings of the National Academy of Sciences USA 98, 69176922.CrossRefGoogle ScholarPubMed
Eisenberg, DP, Sarpal, D, Kohn, PD, Meyer-Lindenberg, A, Wint, D, Kolachana, B, Apud, J, Weinberger, DR, Berman, KF (2009). Catechol-O-methyltransferase valine(158)methionine genotype and resting regional cerebral blood flow in medication-free patients with schizophrenia. Biological Psychiatry 67, 287290.CrossRefGoogle ScholarPubMed
Fan, JB, Zhang, CS, Gu, NF, Li, XW, Sun, WW, Wang, HY, Feng, GY, St Clair, D, He, L (2005). Catechol-O-methyltransferase gene Val/Met functional polymorphism and risk of schizophrenia: a large-scale association study plus meta-analysis. Biological Psychiatry 57, 139144.CrossRefGoogle ScholarPubMed
Friston, K (2003). Experimental design and statistical parametric mapping. In Human Brain Function (ed. Frackowiak, R., Friston, K., Frith, C., Dolan, R., Friston, K., Price, C., Zeki, S., Ashburner, J. and Penny, W.), chapter 1, pp. 167. Academic Press: London.Google Scholar
Glahn, DC, Almasy, L, Blangero, J, Burk, GM, Estrada, J, Peralta, JM, Meyenberg, N, Castro, MP, Barrett, J, Nicolini, H, Raventos, H, Escamilla, MA (2007). Adjudicating neurocognitive endophenotypes for schizophrenia. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics 144B, 242249.CrossRefGoogle ScholarPubMed
Glatt, SJ, Faraone, SV, Tsuang, MT (2003). Association between a functional catechol O-methyltransferase gene polymorphism and schizophrenia: meta-analysis of case-control and family-based studies. American Journal of Psychiatry 160, 469476.CrossRefGoogle ScholarPubMed
Gold, JM (2004). Cognitive deficits as treatment targets in schizophrenia. Schizophrenia Research 72, 2128.CrossRefGoogle ScholarPubMed
Goldberg, TE, Egan, MF, Gscheidle, T, Coppola, R, Weickert, T, Kolachana, BS, Goldman, D, Weinberger, DR (2003). Executive subprocesses in working memory: relationship to catechol-O-methyltransferase Val158Met genotype and schizophrenia. Archives of General Psychiatry 60, 889896.CrossRefGoogle ScholarPubMed
Goldberg, TE, Goldman, RS, Burdick, KE, Malhotra, AK, Lencz, T, Patel, RC, Woerner, MG, Schooler, NR, Kane, JM, Robinson, DG (2007). Cognitive improvement after treatment with second-generation antipsychotic medications in first-episode schizophrenia: is it a practice effect? Archives of General Psychiatry 64, 11151122.CrossRefGoogle ScholarPubMed
Hariri, AR, Goldberg, TE, Mattay, VS, Kolachana, BS, Callicott, JH, Egan, MF, Weinberger, DR (2003). Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. Journal of Neuroscience 23, 66906694.CrossRefGoogle ScholarPubMed
Harrison, P, Lewis, D (2003). Neuropathology of schizophrenia. In Schizophrenia(ed. Hirsch, S. and Weinberger, D.), pp. 310325. Blackwell Science Ltd: Oxford.CrossRefGoogle ScholarPubMed
Honea, R, Crow, TJ, Passingham, D, Mackay, CE (2005). Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. American Journal of Psychiatry 162, 22332245.CrossRefGoogle ScholarPubMed
Karoum, F, Chrapusta, SJ, Egan, MF (1994). 3-Methoxytyramine is the major metabolite of released dopamine in the rat frontal cortex: reassessment of the effects of antipsychotics on the dynamics of dopamine release and metabolism in the frontal cortex, nucleus accumbens, and striatum by a simple two pool model. Journal of Neurochemistry 63, 972979.CrossRefGoogle ScholarPubMed
Kay, SR, Fiszbein, A, Opler, LA (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin 13, 261276.CrossRefGoogle ScholarPubMed
Krach, S, Jansen, A, Krug, A, Markov, V, Thimm, M, Sheldrick, AJ, Eggermann, T, Zerres, K, Stocker, T, Shah, NJ, Kircher, T (2010). COMT genotype and its role on hippocampal-prefrontal regions in declarative memory. NeuroImage 53, 978984.CrossRefGoogle ScholarPubMed
Lachman, HM, Morrow, B, Shprintzen, R, Veit, S, Parsia, SS, Faedda, G, Goldberg, R, Kucherlapati, R, Papolos, DF (1996). Association of codon 108/158 catechol-O-methyltransferase gene polymorphism with the psychiatric manifestations of velo-cardio-facial syndrome. American Journal of Medical Genetics 67, 468472.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Lang, PJ, Bradley, MM, Cuthbert, BN (1997). International Affective Picture System (IAPS): technical manual and affective ratings. NIMH Center for the Study of Emotion and Attention, University of Florida: Gainesville, FL.Google Scholar
Leavitt, VM, Goldberg, TE (2009). Episodic memory in schizophrenia. Neuropsychology Review 19, 312323.CrossRefGoogle ScholarPubMed
Lefebvre, AA, Cellard, C, Tremblay, S, Achim, A, Rouleau, N, Maziade, M, Roy, MA (2009). Familiarity and recollection processes in patients with recent-onset schizophrenia and their unaffected parents. Psychiatry Research 175, 1521.CrossRefGoogle ScholarPubMed
Lepage, M, Sergerie, K, Pelletier, M, Harvey, PO (2007). Episodic memory bias and the symptoms of schizophrenia. Canadian Journal of Psychiatry 52, 702709.CrossRefGoogle ScholarPubMed
Lidow, MS, Koh, PO, Arnsten, AF (2003). D1 dopamine receptors in the mouse prefrontal cortex: immunocytochemical and cognitive neuropharmacological analyses. Synapse 47, 101108.CrossRefGoogle ScholarPubMed
Lipska, BK, Weinberger, DR (2000). To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology 23, 223229.CrossRefGoogle Scholar
Lisman, JE, Grace, AA (2005). The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46, 703713.CrossRefGoogle ScholarPubMed
Livak, K (1999). Allelic discrimination using fluorogenic probes and the 5′nuclease assay. Genetic Analysis 14, 143149.CrossRefGoogle Scholar
Maier, M, Ron, MA, Barker, GJ, Tofts, PS (1995). Proton magnetic resonance spectroscopy: an in vivo method of estimating hippocampal neuronal depletion in schizophrenia. Psychological Medicine 25, 12011209.CrossRefGoogle Scholar
Matsumoto, M, Weickert, CS, Akil, M, Lipska, BK, Hyde, TM, Herman, MM, Kleinman, JE, Weinberger, DR (2003). Catechol O-methyltransferase mRNA expression in human and rat brain: evidence for a role in cortical neuronal function. Neuroscience 116, 127137.CrossRefGoogle ScholarPubMed
Maxwell, M (1992). Family Interview for Genetic Studies (FIGS): Manual for FIGS. Clinical Neurogenetics Branch, Intramural Research Program, National Institute of Mental Health: Bethesda, MD.Google Scholar
Meyer-Lindenberg, A, Nichols, T, Callicott, JH, Ding, J, Kolachana, B, Buckholtz, J, Mattay, VS, Egan, M, Weinberger, DR (2006). Impact of complex genetic variation in COMT on human brain function. Molecular Psychiatry 11, 867877.CrossRefGoogle ScholarPubMed
Meyer-Lindenberg, A, Poline, JB, Kohn, PD, Holt, JL, Egan, MF, Weinberger, DR, Berman, KF (2001). Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. American Journal of Psychiatry 158, 18091817.CrossRefGoogle ScholarPubMed
Meyer-Lindenberg, AS, Olsen, RK, Kohn, PD, Brown, T, Egan, MF, Weinberger, DR, Berman, KF (2005). Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Archives of General Psychiatry 62, 379386.CrossRefGoogle ScholarPubMed
Mier, D, Kirsch, P, Meyer-Lindenberg, A (2009). Neural substrates of pleiotropic action of genetic variation in COMT: a meta-analysis. Molecular Psychiatry 15, 918927.CrossRefGoogle ScholarPubMed
Nelson, MD, Saykin, AJ, Flashman, LA, Riordan, HJ (1998). Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging: a meta-analytic study. Archives of General Psychiatry 55, 433440.CrossRefGoogle ScholarPubMed
Nicodemus, KK, Kolachana, BS, Vakkalanka, R, Straub, RE, Giegling, I, Egan, MF, Rujescu, D, Weinberger, DR (2007). Evidence for statistical epistasis between catechol-O-methyltransferase (COMT) and polymorphisms in RGS4, G72 (DAOA), GRM3, and DISC1: influence on risk of schizophrenia. Human Genetics 120, 889906.CrossRefGoogle ScholarPubMed
Owen, MJ, Williams, NM, O'Donovan, MC (2004). The molecular genetics of schizophrenia: new findings promise new insights. Molecular Psychiatry 9, 1427.CrossRefGoogle ScholarPubMed
Papaleo, F, Crawley, JN, Song, J, Lipska, BK, Pickel, J, Weinberger, DR, Chen, J (2008). Genetic dissection of the role of catechol-O-methyltransferase in cognition and stress reactivity in mice. Journal of Neuroscience 28, 87098723.CrossRefGoogle ScholarPubMed
Penny, W, Holmes, A, Friston, K (2003). Random effects analysis. In Human Brain Function (ed. Frackowiak, R., Friston, K., Frith, C., Dolan, R., Friston, K., Price, C., Zeki, S., Ashburner, J. and Penny, W.), chapter 12, pp. 843850. Academic Press: London.Google Scholar
Prata, DP, Mechelli, A, Fu, CH, Picchioni, M, Kane, F, Kalidindi, S, McDonald, C, Howes, O, Kravariti, E, Demjaha, A, Toulopoulou, T, Diforti, M, Murray, RM, Collier, DA, McGuire, PK (2009 a). Opposite effects of catechol-O-methyltransferase Val158Met on cortical function in healthy subjects and patients with schizophrenia. Biological Psychiatry 65, 473480.CrossRefGoogle ScholarPubMed
Prata, DP, Mechelli, A, Fu, CH, Picchioni, M, Toulopoulou, T, Bramon, E, Walshe, M, Murray, RM, Collier, DA, McGuire, P (2009 b). Epistasis between the DAT 3′ UTR VNTR and the COMT Val158Met SNP on cortical function in healthy subjects and patients with schizophrenia. Proceedings of the National Academy of Sciences USA 106, 1360013605.CrossRefGoogle ScholarPubMed
Ragland, JD, Gur, RC, Valdez, J, Turetsky, BI, Elliott, M, Kohler, C, Siegel, S, Kanes, S, Gur, RE (2004). Event-related fMRI of frontotemporal activity during word encoding and recognition in schizophrenia. American Journal of Psychiatry 161, 10041015.CrossRefGoogle ScholarPubMed
Ranganath, C, Minzenberg, MJ, Ragland, JD (2008). The cognitive neuroscience of memory function and dysfunction in schizophrenia. Biological Psychiatry 64, 1825.CrossRefGoogle ScholarPubMed
Schacter, DL, Wagner, AD (1999). Medial temporal lobe activations in fMRI and PET studies of episodic encoding and retrieval. Hippocampus 9, 724.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Schott, BH, Seidenbecher, CI, Fenker, DB, Lauer, CJ, Bunzeck, N, Bernstein, HG, Tischmeyer, W, Gundelfinger, ED, Heinze, HJ, Duzel, E (2006). The dopaminergic midbrain participates in human episodic memory formation: evidence from genetic imaging. Journal of Neuroscience 26, 14071417.CrossRefGoogle ScholarPubMed
Shifman, S, Bronstein, M, Sternfeld, M, Pisante-Shalom, A, Lev-Lehman, E, Weizman, A, Reznik, I, Spivak, B, Grisaru, N, Karp, L, Schiffer, R, Kotler, M, Strous, RD, Swartz-Vanetik, M, Knobler, HY, Shinar, E, Beckmann, JS, Yakir, B, Risch, N, Zak, NB, Darvasi, A (2002). A highly significant association between a COMT haplotype and schizophrenia. American Journal of Human Genetics 71, 12961302.CrossRefGoogle ScholarPubMed
Smolka, MN, Schumann, G, Wrase, J, Grusser, SM, Flor, H, Mann, K, Braus, DF, Goldman, D, Buchel, C, Heinz, A (2005). Catechol-O-methyltransferase val158met genotype affects processing of emotional stimuli in the amygdala and prefrontal cortex. Journal of Neuroscience 25, 836842.CrossRefGoogle ScholarPubMed
Squire, LR, Stark, CE, Clark, RE (2004). The medial temporal lobe. Annual Review of Neuroscience 27, 279306.CrossRefGoogle ScholarPubMed
Squire, LR, Wixted, JT, Clark, RE (2007). Recognition memory and the medial temporal lobe: a new perspective. Nature Reviews Neuroscience 8, 872883.CrossRefGoogle ScholarPubMed
Thermenos, HW, Seidman, LJ, Poldrack, RA, Peace, NK, Koch, JK, Faraone, SV, Tsuang, MT (2007). Elaborative verbal encoding and altered anterior parahippocampal activation in adolescents and young adults at genetic risk for schizophrenia using FMRI. Biological Psychiatry 61, 564574.CrossRefGoogle Scholar
Tulving, E (1983). Elements of Episodic Memory. Oxford University Press: New York.Google Scholar
van Strien, NM, Cappaert, NL, Witter, MP (2009). The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network. Nature Reviews Neuroscience 10, 272282.CrossRefGoogle ScholarPubMed
Velakoulis, D, Pantelis, C, McGorry, PD, Dudgeon, P, Brewer, W, Cook, M, Desmond, P, Bridle, N, Tierney, P, Murrie, V, Singh, B, Copolov, D (1999). Hippocampal volume in first-episode psychoses and chronic schizophrenia: a high-resolution magnetic resonance imaging study. Archives of General Psychiatry 56, 133141.CrossRefGoogle ScholarPubMed
Vijayraghavan, S, Wang, M, Birnbaum, SG, Williams, GV, Arnsten, AF (2007). Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nature Neuroscience 10, 376384.CrossRefGoogle ScholarPubMed
Weinberger, DR (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry 44, 660669.CrossRefGoogle ScholarPubMed
Weinberger, DR (1999). Cell biology of the hippocampal formation in schizophrenia. Biological Psychiatry 45, 395402.CrossRefGoogle ScholarPubMed
Witthaus, H, Kaufmann, C, Bohner, G, Ozgurdal, S, Gudlowski, Y, Gallinat, J, Ruhrmann, S, Brune, M, Heinz, A, Klingebiel, R, Juckel, G (2009). Gray matter abnormalities in subjects at ultra-high risk for schizophrenia and first-episode schizophrenic patients compared to healthy controls. Psychiatry Research 173, 163169.CrossRefGoogle ScholarPubMed
Wright, IC, Rabe-Hesketh, S, Woodruff, PW, David, AS, Murray, RM, Bullmore, ET (2000). Meta-analysis of regional brain volumes in schizophrenia. American Journal of Psychiatry 157, 1625.CrossRefGoogle ScholarPubMed
Yacubian, J, Sommer, T, Schroeder, K, Glascher, J, Kalisch, R, Leuenberger, B, Braus, DF, Buchel, C (2007). Gene-gene interaction associated with neural reward sensitivity. Proceedings of the National Academy of Sciences USA 104, 81258130.CrossRefGoogle ScholarPubMed
Zahrt, J, Taylor, JR, Mathew, RG, Arnsten, AF (1997). Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. Journal of Neuroscience 17, 85288535.CrossRefGoogle ScholarPubMed