Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-28T15:45:32.849Z Has data issue: false hasContentIssue false

Multiple memory deficits in Alzheimer-type dementia: implications for pharmacotherapy

Published online by Cambridge University Press:  09 July 2009

Michael D. Kopelman*
Affiliation:
Institute of Psychiatry, London
*
1 Address for correspondence: Dr M. D. Kopelman, Department of Psychiatry, Institute of Psychiatry, De Crespigny Park, Denmark Hill, London SE5 8AF.

Synopsis

This paper investigates the memory disorder of Alzheimer-type dementia by comparing the performance of Alzheimer patients on selected memory tests with that of Korsakoff patients and healthy controls. Alzheimer patients have deficits in both primary and secondary memory, and this finding is compared with that which pharmacological studies predict would occur on the basis of cholinergic depletion. The deficits in primary memory are unlikely to be accounted for in terms of cholinergic depletion, and provide a possible explanation for the disappointing results of trials of cholinergic replacement therapy in this disorder. On the other hand, the pattern of deficit in secondary memory is entirely consistent with that expected from cholinergic depletion.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arendt, T., Bigl, V., Arendt, A. & Tennstedt, A. (1983). Loss of neurons in the nucleus basilis of Meynert in Alzheimer's disease, Paralysis Agitans, and Korsakoff's disease. Acta Neuropathologica (Berlin) 61, 101108.CrossRefGoogle Scholar
Baddeley, A. D. (1976). The Psychology of Memory. Harper & Row: London.Google Scholar
Baddeley, A. D. (1982). Implications of neuropsychological evidence for theories of normal memory. Philosophical Transactions of the Royal Society of London B298, 5972.Google Scholar
Baddeley, A. D. (1984). The fractionation of human memory. Psychological Medicine 14, 259264.CrossRefGoogle ScholarPubMed
Baddeley, A. D. & Warrington, E. K. (1970). Amnesia and the distinction between long- and short-term memory. Journal of Verbal Learning and Verbal Behaviour 9, 176189.CrossRefGoogle Scholar
Bartus, R. T., Dean, R. L., Beer, B. & Lippa, A. S. (1982). The cholinergic hypothesis of geriatric memory dysfunction. Science 217, 408417.CrossRefGoogle ScholarPubMed
Black, F. W. & Strub, R. L. (1978). Digit repetition performance in patients with focal brain damage. Cortex 14, 1221.CrossRefGoogle ScholarPubMed
Bondareff, W., Mountjoy, C. Q. & Roth, M. (1982). Loss of neurones of origin of the adrenergic projection to the cerebral cortex (nucleus locus ceruleus) in senile dementia. Neurology 32, 164168.Google Scholar
Bowen, D. M., Smith, C. B., White, P. & Davison, A. N. (1976). Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abrotrophies. Brain 99, 459496.Google Scholar
Broadbent, D. E. (1957). A mechanical model for human attention. Psychological Review 64, 205215.Google Scholar
Broadbent, D. E. (1958). Perception and Communication. Pergamon Press: London.CrossRefGoogle Scholar
Broadbent, D. E. (1977). Levels, hierarchies, and the locus of control. Quarterly Journal of Experimental Psychology 29, 181201.CrossRefGoogle Scholar
Broadbent, D. E. (1983). The functional approach to memory. Philosophical Transactions of the Royal Society of London B302, 239249.Google Scholar
Brown, J. (1958). Some tests of the decay theory of immediate memory. Quarterly Journal of Experimental Psychology 10, 1221.Google Scholar
Brown, J., Brown, M. W. & Bowes, J. B. (1983). Effects of lorazepam on rate of forgetting, on retrieval from semantic memory and on manual dexterity. Neuropsychologia 21, 501512.CrossRefGoogle ScholarPubMed
Butters, N. & Albert, M. (1982). Remote memory, retrograde amnesia, and the neuropsychology of memory. In Human Memory and Amnesia (ed. Cermak, L. S.), pp. 257274. Lawrence Erlbaum: Hillsdale, NJ.Google Scholar
Butters, N. & Cermak, L. S. (1980). Alcoholic Korsakoff's Syndrome: an Information-processing Approach to Amnesia. Academic Press: London.Google Scholar
Caine, E. D., Weingartner, H., Ludlow, C. L., Cudahy, E. A. & Wehry, S. (1981). Qualitative analysis of scopolamine-induced amnesia. Psychopharmacology 74, 7480.CrossRefGoogle ScholarPubMed
Carli, M., Robbins, T. W., Evenden, J. & Everitt, B. J. (1983). Effects of lesions to ascending noradrenergic neurons on performance of a 5-choice serial reaction task in rats: implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal. Behavioural Brain Research 19, 361380.CrossRefGoogle Scholar
Cermak, L. S. (ed.) (1982). Human Memory and Amnesia. Lawrence Erlbaum: Hillsdale, NJ.Google Scholar
Cermak, L. S., Butters, N. & Goodglass, H. (1971). The extent of memory loss in Korsakoff patients. Neuropsychologia 9, 307315.CrossRefGoogle ScholarPubMed
Christie, J. E., Shering, A., Ferguson, J. & Glen, A. I. M. (1981). Physostigmine and arecholine: effects of intravenous infusions in Alzheimer presenile dementia. British Journal of Psychiatry 138, 4650.Google Scholar
Colquhoun, W. P. (1962). Effects of hyoscine and meclozine on vigilance and short-term memory. British Journal of Industrial Medicine 19, 287295.Google Scholar
Corkin, S. (1982). Some relationships between global amnesias and the memory impairments in Alzheimer's disease. In Alzheimer's Disease: A Report on Progress in Research (ed. Corkin, S., Davis, K. L., Growden, J. H., Usdin, E. and Wurtman, R. J.), pp. 149164. Ageing, Vol. 19. Raven Press: New York.Google Scholar
Corkin, S., Davis, K. L., Growden, J. H., Usdin, E. & Wurtman, R. J. (eds.) (1982). Alzheimer's Disease: A Report of Progress in Research. Ageing, Vol. 19. Raven Press: New York.Google Scholar
Corkin, S., Growden, J. H., Nissen, M. J., Huff, F. J., Freed, D. M. & Sagar, H. J. (1984). Recent advances in the neuropsychological study of Alzheimer's disease. In Alzheimer's Disease: Advances in Basic Research and Therapies. Proceedings of the third meeting of the International Study Group: on the treatment of memory disorders associated with ageing (ed. Wurtman, R. J., Corkin, S. and Growden, J. H.), pp. 7594. Center for Brain Sciences and Metabolism Trust: Cambridge, Mass.Google Scholar
Craik, F. I. M. (1971). Primary memory. British Medical Bulletin 27, 232236.Google Scholar
Craik, F. I. M. (1977). Age differences in human memory. In Handbook of the Psychology of Ageing (ed. Birren, J. E. and Schaie, K. W.), pp. 384420. Van Nostrand Rheinhold: New York.Google Scholar
Crashaw, J. A. & Mullen, P. E. (1984). A study of benzhexol abuse. British Journal of Psychiatry 145, 300303.Google Scholar
Cross, A. J., Crow, T. J., Perry, E. K., Perry, R. K., Blessed, G. & Tomlinson, B. E. (1981). Reduced dopamine-beta-hydrocyclase activity in Alzheimer's disease. British Medical Journal i, 9394.CrossRefGoogle Scholar
Cross, A. J., Crow, T. J., Johnson, J. A., Perry, E. K., Perry, R. H., Blessed, G. & Tomlinson, B. E. (1984). Studies on neurotransmitter receptor systems in neocortex and hippocampus in senile dementia of the Alzheimer-type. Journal of the Neurological Sciences 64, 109117.Google Scholar
Crow, T. J. (1979). Action of hyoscine on verbal learning in man: evidence for a cholinergic link in the transition from primary to secondary memory? In Brain Mechanisms in Memory and Learning (ed. Brazier, M. A. B.), pp. 269275. Raven Press: New York.Google Scholar
Crow, T. J. & Grove-White, I. G. (1973). An analysis of the learning deficit following hyoscine administration to man. British Journal of Pharmacology 49, 322327.CrossRefGoogle ScholarPubMed
Crow, T. J., Grove-White, I. G. & Ross, D. G. (1975). The specificity of the action of hyoscine on human learning. British Journal of Clinical Pharmacology 2, 367368.Google Scholar
Cutting, J. (1978 a). The relationship between Korsakoff's syndrome and ‘alcoholic dementia’. British Journal of Psychiatry 132, 240251.Google Scholar
Cutting, J. (1978 b). Patterns of performance in amnesic subjects. Journal of Neurology, Neurosurgery and Psychiatry 41, 278282.CrossRefGoogle ScholarPubMed
Daniels, A. H. (1895). The memory after-image and attention. American Journal of Psychology 6, 558564.Google Scholar
Davies, P. & Maloney, A. J. (1976). Selective loss of central cholinergic neurones in Alzheimer's disease. Lancet ii, 1403.Google Scholar
Drachman, D. A. (1977). Memory and cognitive function in man: does the cholinergic system have a specific role? Neurology 27, 783790.Google Scholar
Drachman, D. A. & Arbit, J. (1966). Memory and the hippocampal complex. Archives of Neurology 15, 5261.Google Scholar
Drachman, D. A. & Leavitt, J. (1974). Human memory and the cholinergic system. Archives of Neurology 30, 113121.Google Scholar
Ebbinghaus, H. (1885). Über das Gedächtnis. Dunker: Leipzig. Translated (1913) Memory (transl. Ruyer, H. and Bussenius, C. E.). Teachers College Press: New York.Google Scholar
Eysenck, H. J. & Halstead, H. (1945). The memory function: a factorial study of fifteen clinical tests. American Journal of Psychiatry 102, 174180.Google Scholar
Ferguson, G. A. (1966). Statistical Analysis in Psychology and Education. McGraw-Hill: London.Google Scholar
Frith, C. D., Richardson, J. T. E., Samuel, M., Crow, T. J. & McKenna, P. J. (1984). The effects of intravenous diazepam and hyoscine upon human memory. Quarterly Journal of Experimental Psychology 36A, 133144.Google Scholar
Ghonheim, M. M. & Mewaldt, S. P. (1975). Effects of diazepam and scopolamine on storage, retrieval, and organisational processes in memory. Psychopharmacologia (Berlin) 44, 257262.CrossRefGoogle Scholar
Ghonheim, M. M. & Mewaldt, S. P. (1977). Studies on human memory: the interactions of diazepam, scopolamine, and physostigmine. Psychopharmacology 52, 16.CrossRefGoogle Scholar
Gruneberg, M. M. (1976). The distinction between short-term memory and long-term memory. Bulletin of the British Psychological Society 29, 327333.Google Scholar
Heston, L. L., Mastri, A. R., Anderson, E. & White, J. (1981). Dementia of the Alzheimer type: clinical genetics, natural history and associated conditions. Archives of General Psychiatry 38, 10851090.Google Scholar
Hitch, G. J. (1984). Working memory. Psychological Medicine 14, 265271.Google Scholar
Hunter, I. M. L. (1964). Memory. Penguin: Harmondsworth.Google Scholar
Huppert, F. A. & Piercy, M. (1978). Dissociation between learning and remembering in organic amnesia. Nature 275, 317318.CrossRefGoogle ScholarPubMed
Huppert, F. A. & Piercy, M. (1979). Normal and abnormal forgetting in organic amnesia: effect of locus of lesion. Cortex 15, 385390.Google Scholar
Inglis, J. (1959). A paired-associate learning test for use with elderly psychiatric patients. Journal of Mental Science 105, 440443CrossRefGoogle ScholarPubMed
Institute of Psychiatry (1973). Notes on Eliciting and Recording Clinical Information. Oxford University Press: Oxford.Google Scholar
Isaacs, B. & Walkey, F. A. (1964). A simplified paired-associate test for elderly hospital patients. British Journal of Psychiatry 110, 8083.Google Scholar
James, W. (1890). Principles of Psychology, Vol. 1. Holt: New York.Google Scholar
Kaszniak, A., Garron, D. & Fox, J. (1979). Differential effects of age and cerebral atrophy upon span of immediate recall and paired-associate learning in older patients suspected of dementia. Cortex 15, 285295.Google Scholar
Kopelman, M. D. (1985 a). Rates of forgetting in Alzheimer-typedementia and Korsakoff's syndrome. Neuuropsychologia (in the press).CrossRefGoogle Scholar
Kopelman, M. D. (1985 b). Clinical tests of memory. British Journal of Psychiatry (in the press).Google Scholar
Lishman, W. A. (1978). Organic Psychiatry: The Psychological Consequences of Cerebral Disorder. Blackwell Scientific Publications: Oxford.Google Scholar
Little, A., Levy, R., Chuaqui-Kidd, P. & Hand, D. (1985). A double blind placebo controlled trial of high dose lecithin in Alzheimer's disease. Journal of Neurology, Neurosurgery, and Psychiatry (in the press).Google Scholar
Mann, D. M. A., Lincoln, J., Yates, P. O., Stamp, J. E. &. Toper, S. (1980). Changes in monoamine containing neurones of the human CNS in senile dementia. British Journal of Psychiatry 136, 533541.CrossRefGoogle ScholarPubMed
McDonald, C. (1969). Clinical heterogeneity in senile dementia. British Journal of Psychiatry 115, 267271.CrossRefGoogle ScholarPubMed
McEntee, W. J. & Mair, R. G. (1978). Memory impairment in Korsakoff's psychosis: a correlation with brain noradrenergic activity. Science 202, 905907.Google Scholar
McEntee, W. J. & Mair, R. G. (1980). Memory enhancement by clonidine: further evidence for a noradrenergic deficit. Annals of Neurology 7, 466470.Google Scholar
McEntee, W. J., Mair, R. G. & Langlais, P. J. (1984). Neurochemical pathology in Korsakoff's psychosis: implications for other cognitive disorders. Neurology 34, 648652.Google Scholar
Melton, A. W. (1963). Implications of short-term memory for a general theory of memory. Journal of Verbal Learning and Verbal Memory 2, 121.Google Scholar
Mewaldt, S. P. & Ghonheim, M. M. (1979). The effects and interactions of scopolamine, physostigmine, and methamphetamine on human memory. Pharmacology, Biochemistry and Behaviour 10, 205210.CrossRefGoogle ScholarPubMed
Miller, E. (1971). On the nature of the memory disorder in presenile dementia. Neuropsychologia 9, 7581.Google Scholar
Miller, E. (1973). Short- and' long-term memory in patients with presenile dementia (Alzheimer's disease). Psychological Medicine 3, 321324.Google Scholar
Mountjoy, C. Q., Rossor, M. N., Iversen, L. L. & Roth, M. (1984). Correlation of cortical cholinergic and GABA deficits with quantitative neuropathological findings in senile dementia. Brain 107, 507518.Google Scholar
National Foundation for Educational Research (1957). Wechsler Adult Intelligence Scale. NFER: Windsor.Google Scholar
Nelson, H. E. & O'Connell, A. (1978). Dementia: the estimation of pre-morbid intelligence levels using the New Adult Reading Test. Cortex, 14, 234244.CrossRefGoogle Scholar
Newcombe, F. (1969). Missile Wounds of the Brain. Oxford University Press: Oxford.Google Scholar
Perry, E. K., Tomlinson, B. E., Blessed, G., Bergmann, K., Gibson, P. H. &. Perry, R. H. (1978). Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. British Medical Journal ii, 14571459.CrossRefGoogle Scholar
Peterson, L. R. & Peterson, M. J. (1959). Short-term retention of individual items. Journal of Experimental Psychology 58, 193198.Google Scholar
Peterson, R. C. (1977). Scopolamine induced learning failures in man. Psychopharmacologia 52, 283289.Google Scholar
Piercy, M. (1977). Experimental studies of the organic amnesic syndrome. In Amnesia (2nd edn) (ed. Whitty, C. W. M. and Zangwill, O. L.), pp. 151. Butterworth: London.Google Scholar
Potamianos, G. & Kellett, J. M. (1982). Anti-cholinergic drugs and memory: the effects of benzherol on memory in a group of geriatric patients. British Journal of Psychiatry 140, 470472.CrossRefGoogle Scholar
Priest, R. G., Tarighati, S. & Shariatmadari, M. E. (1969). A brief test of organic brain disease: validation in a mental hospital population. Acta Psychialrica Scandinavica 45, 347354.CrossRefGoogle Scholar
Raven, J. C., Court, J. H. & Raven, J. (1977). Manual for the Coloured Progressive Matrices. H. K. Lewis: London.Google Scholar
Robbins, T. W. (1984). Cortical noradrenaline, attention, and arousal. Psychological Medicine 14, 1321.Google Scholar
Ron, M. A. (1983). The Alcoholic Brain: CT Scan and Psychological Findings. Psychological Medicine, Monograph Supplement 3. Cambridge University Press: Cambridge.Google Scholar
Rossor, M. N. (1982). Neurotransmitters and CNS disease: dementia. Lancet ii, 12001204.Google Scholar
Rossor, M. N., Garrett, N. J., Johnson, A. L., Mountjoy, C. Q., Roth, M. & Iversen, L. L. (1982). A post-mortem study of the cholinergic and GABA systems in senile dementia. Brain 105, 313330.CrossRefGoogle ScholarPubMed
Rossor, M. N., Iversen, L. L., Reynolds, G. P., Mountjoy, C. Q. & Roth, M. (1984). Neurochemical characteristics of early and late onset types of Alzheimer's disease. British Medical Journal 288, 961964.CrossRefGoogle ScholarPubMed
Safer, D. J. & Allen, R. P. (1971). The central effects of scopolamine in man. Biological Psychiatry 3, 347355.Google Scholar
Savage, R. D., Britton, P. G., Bolton, N. & Hall, E. H. (1973). Intellectual Functioning in the Aged. Methuen: London.Google Scholar
Sims, N., Bowen, D., Smith, C., Flack, R., Davison, A., Snowden, J. & Neary, D. (1980). Glucose metabolism and acetylcholine synthesis in relation to neuronal activity in Alzheimer's disease. Lancet i, 333334.Google Scholar
Sitaram, N., Weingartner, H. & Gillin, J. C. (1978). Human serial learning. Enhancement with arecholine and choline and impairment with scopolamine. Science 201, 274276.CrossRefGoogle ScholarPubMed
Squire, L. R. (1981). Two forms of human amnesia: an analysis of forgetting. Journal of Neuroscience 1, 635640.Google Scholar
Squire, L. R. & Cohen, N. J. (1982). Remote memory, retrograde amnesia, and the neuropsychology of memory. In Human Memory and Amnesia (ed. Cermak, L. S.), pp. 275315. Lawrence Erlbaum: Hillsdale, NJ.Google Scholar
Squire, L. R., Cohen, N. J. & Nadell, L. (1984). The medial temporal region and memory consolidation: a new hypothesis. In Memory Consolidation (ed. Weingartner, H. and Parker, E.), pp. 364. Lawrence Erlbaum: Hillsdale, NJ.Google Scholar
Sullivan, E. V., Feeley, A., Corkin, A. & Growden, J. H. (1984). Verbal and non-verbal tests of short-term memory appropriate for use in longitudinal studies of patients with Alzheimer's disease. In Alzheimer's Disease: Advances in Basic Research and Therapies. Proceedings of the third meeting of the International Study Group on the treatment of memory disorders associated with ageing (ed. Wurtman, R. J., Corkin, S. and Growden, J. H.), p. 469. Center for Brain Sciences and Metabolism Trust: Cambridge Mass.Google Scholar
Swets, J. A. (ed.) (1964). Signal Detection and Recognition by Human Observers. John Wiley & Sons: New York.Google Scholar
Taylor, P. J. & Kopelman, M. D. (1984). Amnesia for criminal offences. Psychological Medicine 14, 581588.Google Scholar
Thorndike, E. L. & Lorge, I. (1944). The Teacher's Book of 30,000 Words. Teachers' College Press: New York.Google Scholar
Warrington, E. K. (1975). The selective impairment of semantic memory. Quarterly Journal of Experimental Psychology 27, 635657.CrossRefGoogle ScholarPubMed
Warrington, E. K. (1982). The double-dissociation of short- and long-term memory deficits. In Human Memory and Amnesia (ed. Cermak, L. S.), pp. 6176. Lawrence Erlbaum: Hillsdale, NJ.Google Scholar
Warrington, E. K., Logue, V. & Pratt, R. (1971). The anatomical localisation of selective impairment of auditory verbal short-term memory. Neuropsychologia 9, 377387.Google Scholar
Waugh, N. C. & Norman, D. A. (1965). Primary memory. Psychological Review 72, 89104.Google Scholar
Wechsler, D. (1917). A study of retention in Korsakoff psychosis. Psychiatric Bulletin, New York State Hospital 2, 403451.Google Scholar
Wechsler, D. (1945). A standardised memory scale for clinical use. Journal of Psychology 19, 8795.CrossRefGoogle Scholar
Wesnes, K. & Warburton, D. M. (1984). Effects of scopolamine and nicotine on human rapid information processing performance. Psychopharmacology 82, 147150.Google Scholar
Whitehead, A. (1973). Verbal learning and memory in elderly depressives. British Journal of Psychiatry 123, 203208.Google Scholar
Wilson, R. S., Bacon, L. D., Fox, J. H. & Kaszniak, A. W. (1983). Primary and secondary memory in dementia of the Alzheimer type. Journal of Clinical Neuropsychologv 5, 337344.Google Scholar
Winocur, G., Oxbury, S., Roberts, R., Agnetti, V. & Davis, C. (1984). Amnesia in a patient with bilateral lesions of the thalamus. Neuropsychologia 22, 123143.CrossRefGoogle Scholar
Zangwill, O. L. (1943). Clinical tests on memory impairment. Proceedings of the Royal Society of Medicine 36, 576580.Google Scholar
Zangwill, O. L. (1946). Some qualitative observations on verbal memory in cases of cerebral lesions. British Journal of Psychology 37, 819.Google Scholar