Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-17T15:07:57.198Z Has data issue: false hasContentIssue false

Essence of the patterns of cover and richness of intertidal hard bottom communities: a pan-European study

Published online by Cambridge University Press:  04 October 2016

Jonne Kotta*
Affiliation:
Estonian Marine Institute, University of Tartu, Tallinn, Estonia
Helen Orav-Kotta
Affiliation:
Estonian Marine Institute, University of Tartu, Tallinn, Estonia
Holger Jänes
Affiliation:
Estonian Marine Institute, University of Tartu, Tallinn, Estonia
Herman Hummel
Affiliation:
Monitor Taskforce, Royal Netherlands Institute for Sea Research (NIOZ), Yerseke, the Netherlands
Christos Arvanitidis
Affiliation:
Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Crete, Greece
Pim Van Avesaath
Affiliation:
Monitor Taskforce, Royal Netherlands Institute for Sea Research (NIOZ), Yerseke, the Netherlands
Guy Bachelet
Affiliation:
Arcachon Marine Station, CNRS, Université de Bordeaux, EPOC, Arcachon, France
Lisandro Benedetti-Cecchi
Affiliation:
Department of Biology, University of Pisa, Pisa, Italy
Natalia Bojanić
Affiliation:
Institute of Oceanography and Fisheries, Split, Croatia
Serena Como
Affiliation:
CNR, Institute for Coastal Marine Environment, Torregrande, Oristano, Italy
Stefania Coppa
Affiliation:
CNR, Institute for Coastal Marine Environment, Torregrande, Oristano, Italy
Jennifer Coughlan
Affiliation:
School of Biology and Environmental Science and Earth Institute, University College Dublin, Ireland
Tasman Crowe
Affiliation:
School of Biology and Environmental Science and Earth Institute, University College Dublin, Ireland
Martina Dal Bello
Affiliation:
Department of Biology, University of Pisa, Pisa, Italy
Steven Degraer
Affiliation:
Royal Belgian Institute of Natural Sciences, Operational Directorate Natural Environment, Aquatic and Terrestrial Ecology, Marine Ecology and Management, Brussels and Oostende, Belgium
Jose Antonio Juanes De La Pena
Affiliation:
Environmental Hydraulics Institute, Universidad de Cantabria, Santander, Spain
Valentina Kirienko Fernandes De Matos
Affiliation:
MARE – Marine and Environmental Sciences Centre and IMAR – Institute of Marine Research, University of the Azores, 9901-862 Horta, Portugal
Free Espinosa
Affiliation:
Laboratorio de Biología Marina, Universidad de Sevilla, Sevilla, Spain
Sarah Faulwetter
Affiliation:
Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Crete, Greece
Matt Frost
Affiliation:
Marine Biological Association, Plymouth, UK
Xabier Guinda
Affiliation:
Environmental Hydraulics Institute, Universidad de Cantabria, Santander, Spain
Emilia Jankowska
Affiliation:
Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Jérôme Jourde
Affiliation:
Observatoire de la biodiversité (OBIONE), UMR 7266 LIttoral ENvironnement et Sociétés, CNRS/University of La Rochelle, France
Francis Kerckhof
Affiliation:
Royal Belgian Institute of Natural Sciences, Operational Directorate Natural Environment, Aquatic and Terrestrial Ecology, Marine Ecology and Management, Brussels and Oostende, Belgium
Nicolas Lavesque
Affiliation:
Arcachon Marine Station, CNRS, Université de Bordeaux, EPOC, Arcachon, France
Jean-Charles Leclerc
Affiliation:
Sorbonne Universités, UPMC Univ. Paris 6, Station Biologique, Place Georges Teissier, 29680 Roscoff, France CNRS, UMR 7144, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
Paolo Magni
Affiliation:
CNR, Institute for Coastal Marine Environment, Torregrande, Oristano, Italy
Christina Pavloudi
Affiliation:
Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Crete, Greece
Maria Luiza Pedrotti
Affiliation:
Sorbonne Universités, UPMC Univ. Paris 6, UMR 7093, LOV, Villefranche-sur-mer, France
Ohad Peleg
Affiliation:
National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
Angel Pérez-Ruzafa
Affiliation:
Department of Ecology and Hydrology, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Spain
Araceli Puente
Affiliation:
Environmental Hydraulics Institute, Universidad de Cantabria, Santander, Spain
Pedro Ribeiro
Affiliation:
MARE – Marine and Environmental Sciences Centre and IMAR – Institute of Marine Research, University of the Azores, 9901-862 Horta, Portugal
Gil Rilov
Affiliation:
National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
Maria Rousou
Affiliation:
Marine and Environmental Research Lab Ltd, Nicosia, Cyprus
Tomas Ruginis
Affiliation:
Open Access Centre for Marine Research, Klaipeda University, Lithuania
Teresa Silva
Affiliation:
Laboratório de Ciências do Mar, Marine and Environmental Sciences Centre (MARE), Universidade de Évora, Sines, Portugal
Nathalie Simon
Affiliation:
Sorbonne Universités, UPMC Univ. Paris 6, Station Biologique, Place Georges Teissier, 29680 Roscoff, France CNRS, UMR 7144, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
Isabel Sousa-Pinto
Affiliation:
Centre for Marine and Environmental Research, CIIMAR, Porto, Portugal
Jesús Troncoso
Affiliation:
ECIMAT, Station of Marine Sciences of Toralla, Department of Ecology and Animal Biology, University of Vigo, Spain
Jan Warzocha
Affiliation:
Marine Fisheries Institute, Gdynia, Poland
Jan Marcin Weslawski
Affiliation:
Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
*
Correspondence should be addressed to: J. Kotta, Estonian Marine Institute, University of Tartu, Tallinn, Estonia Email: jonne@sea.ee

Abstract

Coastal ecosystems are highly complex and driven by multiple environmental factors. To date we lack scientific evidence for the relative contribution of natural and anthropogenic drivers for the majority of marine habitats in order to adequately assess the role of different stressors across the European seas. Such relationship can be investigated by analysing the correlation between environmental variables and biotic patterns in multivariate space and taking into account non-linearities. Within the framework of the EMBOS (European Marine Biodiversity Observatory System) programme, hard bottom intertidal communities were sampled in a standardized way across European seas. Links between key natural and anthropogenic drivers and hard bottom communities were analysed using Boosted Regression Trees modelling. The study identified strong interregional variability and showed that patterns of hard bottom macroalgal and invertebrate communities were primarily a function of tidal regime, nutrient loading and water temperature (anomalies). The strength and shape of functional form relationships varied widely however among types of organisms (understorey algae composing mostly filamentous species, canopy-forming algae or sessile invertebrates) and aggregated community variables (cover or richness). Tidal regime significantly modulated the effect of nutrient load on the cover and richness of understorey algae and sessile invertebrates. In contrast, hydroclimate was more important for canopy algae and temperature anomalies and hydroclimate separately or interactively contributed to the observed patterns. The analyses also suggested that climate-induced shifts in weather patterns may result in the loss of algal richness and thereby in the loss of functional diversity in European hard bottom intertidal areas.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abrams, P.A. (1995) Monotonic or unimodal diversity-productivity gradients: what does competition theory predict? Ecology 76, 20192027.Google Scholar
Armstrong, R.L. and Knowles, K. (2010) ISLSCP II global sea ice concentration. In Hall, F.G., Collatz, G., Meeson, B., Los, S., De Colstoun, E.B. and Landis, D. (eds) ISLSCP initiative II collection. Data set. Available online [http://daac.ornl.gov/] from Oak Ridge, Tennessee, USA: Oak Ridge National Laboratory Distributed Active Archive Center. doi: 10.3334/ORNLDAAC/981.Google Scholar
Arnold, M., Teagle, H., Brown, M.P. and Smale, D.A. (2016) The structure of biogenic habitat and epibiotic assemblages associated with the global invasive kelp Undaria pinnatifida in comparison to native macroalgae. Biological Invasions 18, 661676.Google Scholar
Bird, C.E., Franklin, E.C., Smith, C.M. and Toonen, R.J. (2013) Between tide and wave marks: a unifying model of physical zonation on littoral shores. PeerJ 1, e154.Google Scholar
Bonsdorff, E. and Pearson, T.H. (1999) Variation in the sublittoral macrozoobenthos of the Baltic Sea along environmental gradients: a functional group approach. Australian Journal of Ecology 24, 312326.CrossRefGoogle Scholar
Britton-Simmons, K.H. (2006) Functional group diversity, resource preemption and the genesis of invasion resistance in a community of marine algae. Oikos 113, 395401.CrossRefGoogle Scholar
Bulleri, F., Benedetti-Cecchi, L., Cusson, M., Maggi, E., Arenas, F., Aspden, R., Bertocci, I., Crowe, T.P., Davoult, D., Eriksson, B.K., Fraschetti, S., Golléty, C., Griffin, J., Jenkins, S.R., Kotta, J., Kraufvelin, P., Molis, M., Sousa Pinto, I., Terlizzi, A., Valdivia, N. and Paterson, D.M. (2012) Temporal stability of European rocky shore assemblages: variation across a latitudinal gradient and the role of habitat-formers. Oikos 121, 18011809.Google Scholar
Conley, D.J., Carstensen, J., Aigars, J., Axe, P., Bonsdorff, E., Eremina, T., Haahti, B.M., Humborg, C., Jonsson, P., Kotta, J., Lännegren, C., Larsson, U., Maximov, A., Rodriguez Medina, M., Lysiak-Pastuszak, E., Remeikaité-Nikiené, N., Walve, J., Wilhelms, S. and Zillén, L. (2011) Hypoxia is increasing in the coastal zone of the Baltic Sea. Environmental Science and Technology 45, 67776783.Google Scholar
Connell, S.D. and Irving, A.D. (2008) Integrating ecology with biogeography using landscape characteristics: a case study of subtidal habitat across continental Australia. Journal of Biogeography 35, 16081621.CrossRefGoogle Scholar
Copertino, M.S., Connell, S.D. and Cheshire, A. (2005) Prevalence and production of turf-forming algae on a temperate subtidal coast. Phycologia 43, 241248.Google Scholar
Crowder, L. and Norse, E. (2008) Essential ecological insights for marine ecosystem-based management and marine spatial planning. Marine Policy 32, 772778.Google Scholar
Crowe, T.P., Cusson, M., Bulleri, F., Davoult, D., Arenas, F., Aspden, R., Benedetti-Cecchi, L., Bevilacqua, S., Davidson, I., Defew, E., Fraschetti, S., Golléty, C., Griffin, J.N., Herkül, K., Kotta, J., Migné, A., Molis, M., Nicol, S.K., Noël, L.M.-L.J., Sousa Pinto, I., Valdivia, N., Vaselli, S. and Jenkins, S.R. (2013) Large-scale variation in combined impacts of canopy loss and disturbance on community structure and ecosystem functioning. PLoS ONE 8, e66238.Google Scholar
Dal Bello, M., Leclerc, J.-C., Benedetti-Cecchi, L., Arvanitidis, C., van Avesaath, P., Bachelet, G., Bojanić, N., Como, S., Coppa, S., Coughlan, J., Crowe, T., Degraer, S., Espinosa, F., Faulwetter, S., Frost, M., Guinda, X., Ikauniece, A., Jankowska, E., Jourde, J., Kerckhof, F., Kotta, J., Lavesque, N., de Lucia, A., Magni, P., Fernandes de Matos, V.K., Orav-Kotta, H., Pavloudi, C., Pedrotti, M.L., Peleg, O., de la Pena, J.A.J., Puente, A., Ribeiro, P., Rigaut-Jalabert, F., Rilov, G., Rousou, M., Rubal, M., Ruginis, T., Pérez-Ruzafa, A., Silva, T., Simon, N., Sousa-Pinto, I., Troncoso, J., Warzocha, J., Weslawski, J.M. and Hummel, H. (2016) Consistent patterns of spatial variability between Atlantic and Mediterranean rocky shores. Journal of the Marine Biological Association of the United Kingdom, In press.Google Scholar
Danovaro, R., Canals, M., Gambi, C., Heussner, S., Lampadariou, N. and Vanreusel, A. (2009) Exploring benthic biodiversity patterns and hotspots on European margin slopes. Oceanography 22, 1625.Google Scholar
Dayton, P.K. (1971) Competition, disturbance, and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecological Monographs 41, 351389.CrossRefGoogle Scholar
Dayton, P.K. (1975) Experimental evaluation of ecological dominance in a rocky intertidal algal community. Ecological Monographs 45, 137159.Google Scholar
Denny, M.W., Miller, L.P., Stokes, M.D., Hunt, L.J.H. and Helmuth, B.S.T. (2003) Extreme water velocities: topographical amplification of wave-induced flow in the surf zone of rocky shores. Limnology and Oceanography 48, 18.Google Scholar
Diez, I., Secilla, A., Santolaria, A., and Gorostiaga, J.M. (1999) Phytobenthic intertidal community structure along an environmental pollution gradient. Marine Pollution Bulletin 38, 463472.Google Scholar
Elith, J., Graham, C.H., Anderson, R.P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Mc Overton, J.C.M., Peterson Townsend, A., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberón, J., Williams, S., Wisz, M.S. and Zimmermann, N.E. (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129151.Google Scholar
Elith, J., Kearney, M. and Phillips, S. (2010) The art of modelling range-shifting species. Methods in Ecology and Evolution 1, 330342.Google Scholar
Elith, J., Leathwick, J.R. and Hastie, T. (2008) A working guide to boosted regression trees. Journal of Animal Ecology 77, 802813.CrossRefGoogle ScholarPubMed
Espinosa-Romero, M.J., Chan, K.M.A., McDaniels, T. and Dalmer, D.M. (2011) Structuring decision-making for ecosystem-based management. Marine Policy 35, 575583.CrossRefGoogle Scholar
Field, C.B., Behrenfeld, M.J., Randerson, J.T. and Falkowski, P. (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237240.CrossRefGoogle ScholarPubMed
Golléty, C., Migné, A. and Davoult, D. (2008) Benthic metabolism on a sheltered rocky shore: role of the canopy in the carbon budget. Journal of Phycology 44, 11461153.Google Scholar
Gorostiaga, J.M. and Diez, I. (1996) Changes in the sublittoral benthic marine macroalgae in the polluted area of Abra de Bilbao and proximal coast (Northern Spain). Marine Ecology Progress Series 130, 157167.Google Scholar
Goulletquer, P., Gros, P., Boeuf, G. and Weber, J. (2014) Biodiversity in the marine environment. Amsterdam: Springer.CrossRefGoogle Scholar
Guenther, R.J. and Martone, P.T. (2014) Physiological performance of intertidal coralline algae during a simulated tidal cycle. Journal of Phycology 50, 310321.CrossRefGoogle ScholarPubMed
Halpern, B.S., Walbridge, S., Selkoe, K.A., Kappel, C.V., Micheli, F., D'Agrosa, C., Bruno, J.F., Casey, K.S., Ebert, C., Fox, H.E., Fujita, R., Heinemann, D., Lenihan, H.S., Madin, E.M.P., Perry, M.T., Selig, E.R., Spalding, M., Steneck, R. and Watson, R. (2008) A global map of human impact on marine ecosystems. Science 319, 948952.Google Scholar
Hastie, T., Tibshirani, R. and Friedman, J.H. (2009) The elements of statistical learning: data mining, inference, and prediction. New York, NY: Springer-Verlag.Google Scholar
Hawkins, S.J. and Hartnoll, R.G. (1985) Factors determining the upper limits of intertidal canopy-forming algae. Marine Ecology Progress Series 20, 265271.Google Scholar
Heaven, C.S. and Scrosati, R.A. (2008) Benthic community composition across gradients of intertidal elevation, wave exposure, and ice scour in Atlantic Canada. Marine Ecology Progress Series 369, 1323.Google Scholar
Helmuth, B. and Denny, M.W. (2003) Predicting wave exposure in the rocky intertidal zone: do bigger waves always lead to larger forces? Limnology and Oceanography 48, 13381345.CrossRefGoogle Scholar
Herkül, K., Kotta, J., Kutser, T. and Vahtmäe, E. (2013) Relating remotely sensed optical variability to marine benthic biodiversity. PLoS ONE 8, e55624.Google Scholar
Holyoak, M., Leibold, M.A., Moquet, N., Holt, R.D. and Hoopes, M.F. (2005) Metacommunities: a framework for large-scale community ecology. In Holyoak, M., Leibold, M.A., Moquet, N. and Holt, R.D. (eds) Metacommunities: spatial dynamics and ecological communities. Chicago, IL: University of Chicago Press, pp. 134.Google Scholar
Hoogwijk, M., Faaij, A., van den Broek, R., Berndes, G., Gielen, D. and Turkenburg, W. (2003) Exploration of the ranges of the global potential of biomass for energy. Biomass and Bioenergy 25, 119133.CrossRefGoogle Scholar
Howarth, R.W., Billen, G., Swaney, D., Townsend, A., Jaworski, N., Lajtha, K., Downing, J.A., Elmgren, R., Caraco, N., Jordan, T., Berendse, F., Freney, J., Kudeyarov, V., Murdoch, P. and Zhu, Z-L. (1996) Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35, 75139.Google Scholar
Hubbert, M.K. (1949) Energy from fossil fuels. Science 109, 103109.Google Scholar
Johnston, E.L., Keough, M. and Qian, P. (2002) Maintenance of species dominance through pulse disturbances to a sessile marine invertebrate assemblage in Port Shelter, Hong Kong. Marine Ecology Progress Series 226, 103114.Google Scholar
Jutterström, S., Andersson, H.C., Omstedt, A. and Malmaeus, J.M. (2014) Multiple stressors threatening the future of the Baltic Sea–Kattegat marine ecosystem: implications for policy and management actions. Marine Pollution Bulletin 86, 468480.CrossRefGoogle ScholarPubMed
Kaiser, M.J., Attrill, M.J., Jennings, S., Thomas, D.N., Barnes, D.K.A., Brierley, A.S., Hiddink, J.G., Kaartokallio, H., Polunin, N.V.C. and Raffaelli, D.G. (2011) Marine ecology: processes, systems, and impacts. Oxford: Oxford University Press.Google Scholar
Karydis, M. and Kitsiou, D. (2012) Eutrophication and environmental policy in the Mediterranean Sea: a review. Environmental Monitoring and Assessment 184, 49314984.Google Scholar
Kotta, J., Kutser, T., Teeveer, K., Vahtmäe, E. and Pärnoja, M. (2013) Predicting species cover of marine macrophyte and invertebrate species combining hyperspectral remote sensing, machine learning and regression techniques. PLoS ONE 8, e63946.Google Scholar
Kotta, J., Möller, T., Orav-Kotta, H. and Pärnoja, M. (2014) Realized niche width of a brackish water submerged aquatic vegetation under current environmental conditions and projected influences of climate change. Marine Environmental Research 102, 88101.CrossRefGoogle ScholarPubMed
Kotta, J. and Witman, J. (2009) Regional-scale patterns. In Wahl, M. (ed.) Marine hard bottom communities. Berlin: Springer-Verlag, pp. 8999.Google Scholar
Kraufvelin, P., Ruuskanen, A.T., Nappu, N. and Kiirikki, M. (2007) Winter colonisation and succession of filamentous macroalgae on artificial substrates and possible relationships to Fucus vesiculosus settlement in early summer. Estuarine Coastal and Shelf Science 72, 665674.CrossRefGoogle Scholar
Lima, F.P., Ribeiro, P.A., Queiroz, N., Hawkins, S.J. and Santos, A.M. (2007a) Do distributional shifts of northern and southern species of algae match the warming pattern? Global Change Biology 13, 25922604.Google Scholar
Lima, F.P., Ribeiro, P.A., Queiroz, N., Xavier, R., Tarroso, P., Hawkins, S.J. and Santos, A.M. (2007b) Modelling past and present geographical distribution of the marine gastropod Patella rustica as a tool for exploring responses to environmental change. Global Change Biology 13, 20652077.Google Scholar
Long, R.D., Charles, A. and Stephenson, R.L. (2015) Key principles of marine ecosystem-based management. Marine Policy 57, 5360.Google Scholar
Maestre, F.T., Quero, J.L., Gotelli, N.J., Escudero, A., Ochoa, V., Delgado-Baquerizo, M., García-Gómez, M., Bowker, M.A., Soliveres, S., Escolar, C., García-Palacios, P., Berdugo, M., Valencia, E., Gozalo, B., Gallardo, A., Aguilera, L., Arredondo, T., Blones, J., Boeken, B., Bran, D., Conceição, A.A., Cabrera, O., Chaieb, M., Derak, M., Eldridge, D.J., Espinosa, C.I., Florentino, A., Gaitán, J., Gatica, M.G., Ghiloufi, W., Gómez-González, S., Gutiérrez, J.R., Hernández, R.M., Huang, X., Huber-Sannwald, E., Jankju, M., Miriti, M., Monerris, J., Mau, R.L., Morici, E., Naseri, K., Ospina, A., Polo, V., Prina, A., Pucheta, E., Ramírez-Collantes, D.A., Romão, R., Tighe, M., Torres-Díaz, C., Val, J., Veiga, J.P., Wang, D. and Zaady, E. (2012) Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214218.Google Scholar
Menge, B.A. and Sutherland, J.P. (1987) Community regulation: variation in disturbance, competition and predation in relation to environmental stress and recruitment. American Naturalist 130, 730757.Google Scholar
Narayanaswamy, B.E., Coll, M., Danovaro, R., Davidson, K., Ojaveer, H. and Renaud, P.E. (2013) Synthesis of knowledge on marine biodiversity in European Seas: from census to sustainable management. PLoS ONE 8, e58909.Google Scholar
Orav-Kotta, H. and Kotta, J. (2004) Food and habitat choice of the isopod Idotea baltica in the northeastern Baltic Sea. Hydrobiologia 514, 7985.Google Scholar
Pedersen, M.F. and Borum, J. (1996) Nutrient control of algal growth in estuarine waters. Nutrient limitation and the importance of nitrogen requirements and nitrogen storage among phytoplankton and species of macroalgae. Marine Ecology Progress Series 142, 261272.Google Scholar
Peterson, A.T. (2003) Predicting the geography of species’ invasions via ecological niche modeling. Quarterly Review of Biology 78, 419433.Google Scholar
Råberg, S. and Kautsky, L. (2007) A comparative biodiversity study of the associated fauna of perennial fucoids and filamentous algae. Estuarine, Coastal and Shelf Science 73, 249258.Google Scholar
Ramos, E., Puente, A., Guinda, X. and Juanes, J.A. (2016a) A hierarchical classification system along the NE Atlantic coast: focusing on the local scale (Cantabria, N Spain). European Journal of Phycology, in press. doi: 10.1080/09670262.2016.1221469.Google Scholar
Ramos, E., Puente, A. and Juanes, J. (2016b) An ecological classification of rocky shores at a regional scale: a predictive tool for management of conservation values. Marine Ecology 37, 311328.Google Scholar
RDC Team (2013) R: a language and environment for statistical computing. Vienna: The R Foundation for Statistical Computing. Available at: http://www.r-project.org/.Google Scholar
Rees, H.L., Pendle, M.A., Waldock, R., Limpenny, D.S. and Boyd, S.E. (1999) A comparison of benthic biodiversity in the North Sea, English Channel, and Celtic Seas. ICES Journal of Marine Science 56, 228246.CrossRefGoogle Scholar
Ricklefs, R.E. and Schluter, D. (1993) Species diversity: regional and historical influences. In Ricklefs, R.E. and Schluter, D. (eds) Species diversity in ecological communities: historical and geographical perspectives. Chicago, IL: University of Chicago Press, pp. 350364.Google Scholar
Roy, K., Jablonski, D., Valentine, J.W. and Rosenberg, G. (1998) Marine latitudinal diversity gradients: tests of causal hypotheses. Proceedings of the National Academy of Sciences USA 95, 36993702.Google Scholar
Russell, R., Wood, S.A., Allison, G. and Menge, B.A. (2006) Scale, environment and trophic status: the context dependency of community saturation in rocky intertidal communities. American Naturalist 167, E158E170.Google Scholar
Sandman, A.N., Wikström, S.A., Blomqvist, M., Kautsky, H. and Isaeus, M. (2013) Scale-dependent influence of environmental variables on species distribution: a case study on five coastal benthic species in the Baltic Sea. Ecography 36, 354363.Google Scholar
Schiele, K., Darr, A., Zettler, M.L., Berg, T., Blomqvist, M., Daunys, D., Jermakovs, V., Korpinen, S., Kotta, J., Nygård, H., von Weber, M., Voss, J. and Warzocha, J. (2016) Rating species sensitivity throughout gradient systems – a consistent approach for the Baltic Sea. Ecological Indicators 61, 447455. doi: 10.1016/j.ecolind.2015.09.046.Google Scholar
Smale, D.A., Burrows, M.T., Evans, A.J., King, N., Sayer, M.D.J., Yunnie, A.L.E. and Moore, P.J. (2016) Linking environmental variables with regional-scale variability in ecological structure and standing stock of carbon within kelp forests in the United Kingdom. Marine Ecology Progress Series 542, 7995.Google Scholar
Smale, D.A., Burrows, M.T., Moore, P., O'Connor, N. and Hawkins, S.J. (2013) Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective. Ecology and Evolution 3, 40164038.CrossRefGoogle ScholarPubMed
Smale, D.A. and Wernberg, T. (2013) Extreme climatic event drives range contraction of a habitat-forming species. Proceedings of the Royal Society B 280, 20122829.Google Scholar
Soberon, J. and Peterson, A.T. (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics 2, 110.Google Scholar
Stackhouse, P.W. and Gupta, S.K. (2012) ISLSCP II cloud and meteorology parameters. In Hall, F.G., Collatz, G., Meeson, B., Los, S., De Colstoun, E.B. and Landis, D. (eds) ISLSCP Initiative II Collection. Data set. Available online [http://daac.ornl.gov/] from Oak Ridge, Tennessee, USA: Oak Ridge National Laboratory Distributed Active Archive Center. doi: 10.3334/ORNLDAAC/1073.Google Scholar
Stephenson, T.A. and Stephenson, A. (1972) Life between tidemarks on rocky shores. San Francisco, CA: WH Freeman.Google Scholar
Tett, P., Gilpin, L., Svendsen, H., Erlandsson, C.P., Larsson, U., Kratzer, S., Fouilland, E., Janzen, C., Lee, J.-Y., Grenz, C., Newton, A., Ferreira, J.G., Fernandes, T. and Scory, S. (2003) Eutrophication and some European waters of restricted exchange. Continental Shelf Research 23, 16351671.Google Scholar
Thorner, J., Kumar, L. and Smith, S.D.A. (2014) Impacts of climate-change-driven sea level rise on intertidal rocky reef habitats will be variable and site specific. PLoS ONE 9, e86130.Google Scholar
Tomanek, L. and Helmuth, B. (2002) Physiological ecology of rocky intertidal organisms: a synergy of concepts. Integrative and Comparative Biology 42, 771775.Google Scholar
Underwood, A.J. (1978) A refutation of critical tidal levels as determinants of the structure of intertidal communities on British shores. Journal of Experimental Marine Biology and Ecology 33, 261276.Google Scholar
Underwood, A.J. and Jernakoff, P. (1981) Effects of interactions between algae and grazing gastropods on the structure of a low-shore intertidal algal communities. Oecologia 48, 221233.Google Scholar
Valiela, I., Mcclelland, J., Hauxwell, J., Behr, P.J., Hersh, D. and Foreman, K. (1988) Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnology and Oceanography 42, 11051118.Google Scholar
Wernberg, T., Smale, D.A., Tuya, F., Thomsen, M.S., Langlois, T.J., de Bettignies, T., Bennett, S. and Rousseaux, C.S. (2013) An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nature Climate Change 3, 7882.CrossRefGoogle Scholar
Wernberg, T., Thomsen, M.S., Tuya, F., Kendrick, G.A., Staehr, P.A. and Toohey, B.D. (2010) Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future. Ecology Letters 13, 685694.Google Scholar
Weslawski, J.M., Wiktor, J. Jr and Kotwicki, L. (2010) Increase in biodiversity in the arctic rocky littoral, Sorkappland, Svalbard, after 20 years of climate warming. Marine Biodiversity 40, 123130.Google Scholar
Whittaker, R.O. (1974) Communities and ecosystems. New York, NY: Macmillan.Google Scholar
Wikström, S.A. and Kautsky, L. (2007) Structure and diversity of invertebrate communities in the presence and absence of canopy-forming Fucus vesiculosus in the Baltic Sea. Estuarine Coastal and Shelf Science 72, 168176.Google Scholar
Zacharias, M.A. and Roff, J.C. (2001) Explanations of patterns of intertidal diversity at regional scales. Journal of Biogeography 28, 471483.Google Scholar