Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T21:45:06.079Z Has data issue: false hasContentIssue false

Responses of Branchiomma Vesiculosum (Montagu) to photic stimulation

Published online by Cambridge University Press:  11 May 2009

J. A. C. Nicol
Affiliation:
Experimental Zoologist at the Plymouth Laboratory

Extract

In Branchiomma vesiculosum decrease in light intensity causes the animal to contract and withdraw into its tube. A decrease, never an increase, in illumination is the effective stimulus. When repeatedly stimulated the animals quickly become adapted to intensity changes and no longer respond.

The minimal effective intensity change has been determined for a range of intensities. ΔI/I is found to increase in low light intensities, and to be fairly constant in intensities over 50 lux. The animals are least sensitive to red light; sensitivity increases in shorter wave-lengths.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1950

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrews, E. A., 1891. Compound eyes of annelids. Journ. Morph., Vol. 5, pp. 271300.CrossRefGoogle Scholar
Atkins, W. R. G., 1939. Illumination in algal habitats. Botaniska Notiser, 1939, pp. 145–57.Google Scholar
Atkins, W. R. G., 1945. Daylight and its penetration into the sea. Trans. Illuminating Engineering Soc. (London), Vol. X, pp. 112.Google Scholar
Atkins, W. R. G. & Poole, H. H., 1931. Photoelectric measurements of illumination in relation to plant distribution. Part 4. Changes in the colour composition of daylight in the open and in shaded positions. Sci. Proc. R. Dublin Soc., Vol. 20, pp. 1366.Google Scholar
Atkins, W. R. G. & Poole, H. H., 1940. A cubical photometer for studying the angular distribution of submarine daylight. Journ. Mar. Biol. Assoc., Vol. XXIV, pp. 271–81.CrossRefGoogle Scholar
Bohn, G., 1902. Contribution à la psychologie des annélides. Bull. Inst. Gen. Psychol., Vol. 2, pp. 317–25 (in Jenkins, 1940).Google Scholar
Buddenbrock, W. von, 1913. Über die Funktion der Statocysten im Sande grabender Meerestiere. Zool. Jahrb., Vol. 33, pp. 441–82.Google Scholar
Buddenbrock, W. von, 1928. Grundriss der vergleichenden Physiologie. Berlin.Google Scholar
Claparède, E., 1868. Les Annélides Chétopodes du Golfe de Naples. Geneva and Basle.Google Scholar
Claparède, E., 1870. Les Annélides Chétopodes du Golfe de Naples. Suppl. Geneva and Basle.CrossRefGoogle Scholar
Copeland, M., 1930. An apparent conditioned response in Nereis virens. Journ. Comp. Psychol., Vol. 10, pp. 339–54.CrossRefGoogle Scholar
Dalyell, Sir J. G., 1858. The Power of the Creator Displayed in the Creation. London.Google Scholar
Evans, R. G., 1947. The intertidal ecology of selected localities in the Plymouth neighbourhood. Journ. Mar. Biol. Assoc., Vol. XXVII, pp. 173218.CrossRefGoogle Scholar
Fox, H. M., 1938. On the blood circulation and metabolism of sabellids. Proc. Roy. Soc., B, Vol. 125, pp. 554–69.Google Scholar
Gosse, P. H., 1863. A sabella building its tube. Intellect. Obser., Vol. 3, pp. 7781.Google Scholar
Gosse, P. H., 1877. Evenings at the Microscope, etc. London.Google Scholar
Hargitt, C. W., 1906. Experiments on the behavior of tubicolous annelids. Journ. Exp. Zool., Vol. 3, pp. 295320.Google Scholar
Hargitt, C. W., 1909 a. Behavior of tubicolous organisms. Proc. Seventh Int. Zool. Congr., p. 6.Google Scholar
Hargitt, C. W., 1909 b. Further observations on the behavior, of tubicolous annelids. Journ. Exp. Zool., Vol. 7, pp. 157–87.CrossRefGoogle Scholar
Hargitt, C. W., 1912. Observations on the behavior of tubicolous annelids. III. Biol. Bull., Vol. 22, pp. 6794.CrossRefGoogle Scholar
Hecht, S., 1924. Intensity discrimination and the stationary state. Journ. Gen. Physiol., Vol. 6, pp. 355–74.CrossRefGoogle ScholarPubMed
Hess, C., 1914. Untersuchungen über den Lichtsinn mariner Würmer und Krebse. Pflüger's Arch. ges. Physiol., Vol. 155, pp. 421–35.CrossRefGoogle Scholar
Hesse, R., 1899. Untersuchungen über die Organe der Lichtempfindung bei niederen Thieren. V. Die Augen der polychäten Anneliden. Zeit. wiss. Zool., Vol. 65, pp. 446516.Google Scholar
Jenkins, T. N., 1940. Invertebrates. In Comparative Psychology: A Comprehensive Treatise, by Warden, C. J., Jenkins, T. N., and Warner, L. H.. Vol. 11, New York.Google Scholar
Lange, B., 1940. Die Photoelemente und ihre Anwendung. Berlin.Google Scholar
Loeb, J., 1906. Further observations on the heliotropism of animals and its identity with the heliotropism of plants. In Studies in General Physiology, Part 1, pp. 89106. London and Chicago.Google Scholar
Loeb, J., 1918. Forced Movements, Tropisms and Animal Conduct. London.Google Scholar
Nicol, J. A. C., 1948 a. The giant axons of annelids. Quart. Rev. Biol., Vol. 23, pp. 291323.Google ScholarPubMed
Nicol, J. A. C., 1948 b. The function of the giant axon of Myxicola infundibulum. Canad. Journ. Research, D, Vol. 26, pp. 212–22.CrossRefGoogle ScholarPubMed
Rawdon-Smith, A. F., 1938. Theories of Sensation. Cambridge.Google Scholar
Ricketts, E. F. & Calvin, J., 1939. Between Pacific Tides. Stanford, Cal.Google Scholar
Soulier, A., 1891. Études sur quelques points de l'anatomie des annélides tubicoles de la region de Cette. Trav. Inst. Zool. Montpellier et Cette, Mém. 2. Paris.Google Scholar
Steven, G. A., 1930. Bottom fauna and the food of fishes. Journ. Mar. Biol. Assoc., Vol. XVI, pp. 677706.Google Scholar
Ullyott, P., 1936. The behaviour of Dendrocoelum lacteum. I. Responses at lightand dark-boundaries. Journ. Exp. Biol., Vol. 13, pp. 253–64.CrossRefGoogle Scholar
Wilson, D. P., 1935. Life of the Shore and Shallow Sea. London.Google Scholar
Yerkes, A. W., 1906. Modifiability of behavior in Hydroides dianthus. V. Journ. Comp. Neur., Vol. 16, pp. 441–50 (in Jenkins, 1940).Google Scholar