Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-01T12:26:06.963Z Has data issue: false hasContentIssue false

The Development of the Retina and Retinomotor Responses in the Herring

Published online by Cambridge University Press:  11 May 2009

J. H. S. Blaxter
Affiliation:
Department of Natural History, University of Aberdeencor1corresp
1
M. Pattie Jones
Affiliation:
Department of Natural History, University of Aberdeencor1corresp
1

Extract

The eye of the larval herring has only single cones in the retina. They are characteristic in ultrastructure at this stage with a striated outer segment, an ellipsoid packed with mitochondria and with a connecting cilium at the junction. Cones are gradually added at the margin of the retina as the larva grows. There are no retinomotor responses in the larval eye. It has, however, adult characteristics in the postero-ventral area temporalis (though it is undifferentiated at this stage) with its blindly ending anterior pocket and in the falciform process closing off a trough-shaped ‘ancillary’ eye.

At metamorphosis (30–40 mm) a number of changes occur: the area differentiates, twin cones and the rods appear, the latter perhaps developing from cells originating in the bipolar layer and migrating to a position inside the external limiting membrane. Retinomotor pigment migration and change in length of the cone myoids also develop when the eye is subjected to changing light intensities, the threshold being 1.0–0.01 me (metre candles).

In the adult eye the fully developed retina has an area temporalis packed with single cones giving high acuity on the main visual axis, which is in the upperfore direction. The lens presumably gives accommodation by postero-ventral movement brought about by a postero-dorsal suspensory ‘ligament’ and a ventroanterior falciform process. This process also delimits the area and divides off the ‘ancillary’ eye from the main retina.

Over the whole range of development the cone ellipsoids grow in diameter from 2 to 12 μ and decrease in density correspondingly.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, M. A., 1959. The ocular structure, retinomotor and photobehavioral responses of juvenile Pacific salmon. Canad. J. Zool., Vol. 37, pp. 965–96.CrossRefGoogle Scholar
Ali, M. A., 1961. Histophysiological studies on the juvenile Atlantic salmon (Salmo salar) retina. II. Responses to light intensities, wavelengths, temperatures, and continuous light and dark. Canad. Z. Zool., Vol. 39, pp. 511–26.Google Scholar
Arey, L. B. & Mundt, G. H., 1941. A persistent diurnal rhythm in visual cones. Anat. Rec, Vol. 79 (Suppl.), p. 5.Google Scholar
Baburina, E. A., 1955. The structure of the eye and retina in Clupeonella delicatula (in Russian—translation 838 Mar. Lab. Aberdeen). Dokl. Akad. Nauk. S.S.S.R., Vol. 102, pp. 625–8.Google Scholar
Blaxter, J. H. S., 1962. Herring rearing. IV. Rearing beyond the yolk-sac stage. Mar. Res., No. 1, 18 pp.Google Scholar
Blaxter, J. H. S., 1966. The effect of light intensity on the feeding ecology of herring. Symp. ecol. Soc, Vol. 6, pp. 393409.Google Scholar
Blaxter, J. H. S., 1968a. Rearing herring to metamorphosis and beyond. J. mar. biol. Ass. U.K. (In the Press).Google Scholar
Blaxter, J. H. S., 1968b. Visual thresholds and spectral sensitivity of herring larvae. J. exp. Biol. (In the Press).CrossRefGoogle Scholar
Blaxter, J. H. S. & Holliday, F. G. T., 1958. Herring (Clupea harengus L.) in aquaria. II. Feeding. Mar. Res., No. 6, 22 pp.Google Scholar
Blaxter, J. H. S. & Holliday, F. G. T., 1963. The behaviour and physiology of herring and other clupeids. Adv. mar. Biol., Vol. 1, pp. 261393.CrossRefGoogle Scholar
Blaxter, J. H. S. & Parrish, B. B., 1965. The importance of light in shoaling, avoidance of nets and vertical migration by herring. J. Cons. perm. int. Explor. Mer, Vol. 30, pp. 4057.Google Scholar
Blaxter, J. H. S. & Parrish, B. B., 1966. The reaction of marine fish to moving netting and other devices in tanks. Mar. Res., No. 1, 15 pp.Google Scholar
Craig, R. E. & Lawrie, R. G., 1962. An underwater light intensity meter. Limnol. Oceanogr., Vol. 7, 259–61.Google Scholar
Denton, E. J. & Nicol, J. A. C., 1965. Reflexion of light by external surfaces of the herring Clupea harengus. J. mar. biol. Ass. U.K., Vol. 45, pp. 711–38.Google Scholar
Dowling, J. E., 1967. The site of visual adaptation. Science, N. Y., Vol. 155, pp. 273–9.CrossRefGoogle ScholarPubMed
Engström, K., 1963a. Structure, organization and ultrastructure of the visual cells in the teleost family Labridae. Acta Zool., Vol. 44, pp. 141.CrossRefGoogle Scholar
Engström, K., 1963b. Cone types and cone arrangements in teleost retinae. Acta Zool., Vol. 44, pp. 179243.CrossRefGoogle Scholar
Lyall, A. H., 1957 a. The growth of the trout retina. Q. Jl microsc. Sci., Vol. 98, pp. 101–10.Google Scholar
Lyall, A. H., 1957b. Cone arrangements in teleost retinae. Q. Jl microsc. Sci., Vol. 98, pp. 189201.Google Scholar
Lythgoe, J. N. & Hemmings, C. C., 1967. Polarized light and underwater vision. Nature, Lond., Vol. 213, pp. 893–4.Google Scholar
Müller, H., 1952. Bau and Wachstum der Netzhaut des Guppy (Lebistes reticulatus). Zool. Jb., Vol. 63, pp. 275324.Google Scholar
Nakamura, E. L., 1967. Visual acuity of two scombrid fishes Katsuwonus pelamis and Euthynnus affinis. (In the Press).Google Scholar
O'connell, C. P., 1963. The structure of the eye of Sardinops caerulea, Engraulis mordax and four other pelagic marine teleosts. J. Morph., Vol. 113, pp. 287329.Google Scholar
Shafer, G. D., 1900. The mosaic of the single and twin cones in the retina of Micropterus salmoides. Arch. Entw.Mech. Org., Bd. 10, pp. 685–91.Google Scholar
Stewart, K. W., 1962. Observations on the morphology and optical properties of the adipose eyelids of fishes. J. Fish. Res. Bd Can., Vol. 19, pp. 1161–2.CrossRefGoogle Scholar
Tamura, T., 1957. A study of visual perception in fish, especially on resolving power and accommodation. Bull. Jap. Soc. sci. Fish., Vol. 22, pp. 536–57.CrossRefGoogle Scholar
Tamura, T. & Wisby, W. J., 1963. The visual sense of pelagic fishes especially the visual axis and accommodation. Bull. mar. Sci. Gulf Caribb., Vol. 13, pp. 433–8.Google Scholar
Verheijen, F. J., 1959. A peculiar nystagmus and a corresponding areal structure in the eye of the herring (Clupea harengus L.). Experientia, Vol. 15, p. 443.Google Scholar
Vilter, V., 1950. Adaptation biologique de l'appareil visuel et les structures rétiniennes de la sardine. C. r. Séanc. Soc. Biol., Vol. 144, pp. 200–3.Google Scholar
Walls, G. L., 1963. The Vertebrate Eye and Its Adaptive Radiation. 785 pp. New York, London: Hafner Publishing Company.Google Scholar
Welsh, J. H. & Osborn, C. M., 1937. Diurnal changes in the retina of the catfish, Ameirus nebulosus. J. comp. Neurol., Vol. 66, pp. 349–59.CrossRefGoogle Scholar
Wigger, H., 1941. Diskontinuitat und Tagesrhythmik in der Dunkelwanderung retinaler Elemente. Z. vergl. Physiol., Vol. 28, pp. 421–7.Google Scholar