Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T02:00:26.783Z Has data issue: false hasContentIssue false

The respiratory retention of bacterial aerosols: experiments with radioactive spores

Published online by Cambridge University Press:  15 May 2009

G. J. Harper
Affiliation:
Microbiological Research Department, Ministry of Supply, Porton, Wilts
J. D. Morton
Affiliation:
Microbiological Research Department, Ministry of Supply, Porton, Wilts
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The distribution of inhaled bacterial aerosols has been studied in guinea-pigs, monkeys and mice, using Bacillus subtilis spores labelled with radiophosphorus. Particle sizes from about 1 to 12μ have been used.

The guinea-pig shows the expected change of distribution with particle size; the proportion retained in the head increases with increased particle size. The figures correspond closely with those for man. Monkeys show similar results but are more irregular.

The subsequent fate of the retained particles has been studied and accords with what is known about ciliary removal.

The work is intended to link with parallel investigations of respiratory infection in closely similar conditions, and its implications are discussed in a paper on that subject (Druett et al. 1953).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1953

References

Barnes, J. M. (1947). Brit. J. exp. Path. 28, 385.Google Scholar
Buckland, F. E., Harper, G. J. & Morton, J. D. (1950). Nature, Lond., 166, 354.CrossRefGoogle Scholar
Davies, C. N. (1949). Brit. J. industr. Med. 6, 245.Google Scholar
Davies, C. N. (1952). Brit. J. industr. Med. 9, 120.Google Scholar
Druett, H. A. & May, K. R. (1952). J. Hyg., Camb., 50, 67.CrossRefGoogle Scholar
Druett, H. A., Henderson, D. W., Packman, L. P. & Peacock, S. (1953). J. Hyg., Camb., 51, 359.CrossRefGoogle Scholar
Ely, J. O. (1942). J. Franklin Inst. 234, 500.Google Scholar
Goldberg, L. J. & Leif, W. R. (1950). Science, 112, 299.CrossRefGoogle Scholar
Guyton, A. C. (1947). Amer. J. Physiol. 150, 70.CrossRefGoogle Scholar
Harper, G. J. & Morton, J. D. (1952). J. gen. Microbiol. 7, 98.CrossRefGoogle Scholar
Henderson, D. W. (1952). J. Hyg., Camb., 50, 53.CrossRefGoogle Scholar
Landahl, H. D. & Black, S. (1947). J. industr. Hyg. 29, 269.Google Scholar
Landahl, H. D. & Herrmann, R. G. (1948). J. industr. Hyg. 30, 181.Google Scholar
Landahl, H. D. & Tracewell, T. (1949). J. industr. Hyg. 31, 55.Google Scholar
Sawyer, K. F. (1949). Ministry of Supply papers, limited circulation.Google Scholar
Scott, K. G., Axelrod, D., Crowley, T. & Hamilton, J. G. (1949). Arch. Path., 48, 31.Google Scholar
Van Wijk, A. M. & Patterson, H. S. (1940). J. industr. Hyg. 22, 31.Google Scholar
Veall, N. (1948). Brit. J. Radiol. 21, 347.Google Scholar
Wilson, I. B. & La Mer, V. K. (1948). J. industr. Hyg. 30, 265.Google Scholar