Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-01T21:48:53.990Z Has data issue: false hasContentIssue false

RETRACTED – Immune recognition of excretory and secretory products of the filarial nematode Onchocerca ochengi in cattle and human sera

Published online by Cambridge University Press:  11 September 2015

B. Djafsia
Affiliation:
Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, PO Box 454 Ngaoundéré, Cameroon Tropical Medicine Section, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany
D. Ndjonka*
Affiliation:
Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, PO Box 454 Ngaoundéré, Cameroon
J.V. Dikti
Affiliation:
Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, PO Box 454 Ngaoundéré, Cameroon Department of Molecular Physiology, Institute for Zoophysiology, Schlossplatz 8, 48143 Muenster, Germany
S. van Hoorn
Affiliation:
Tropical Medicine Section, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany
K. Manchang
Affiliation:
Institute of Agricultural Research for Development, Veterinary Research Laboratory, Wakwa regional centre, PO Box 65 Ngaoundéré, Cameroon
N. Brattig
Affiliation:
Tropical Medicine Section, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany
E. Liebau
Affiliation:
Department of Molecular Physiology, Institute for Zoophysiology, Schlossplatz 8, 48143 Muenster, Germany

Abstract

Excretory–secretory (ES) products of nematodes and other helminths are the first molecules to interact with cell surfaces and soluble proteins within the host. In the present study, ES products of the filarial nematode Onchocerca ochengi were investigated as a model for Onchocerca volvulus, the causative agent of river blindness. These products were collected from adult and larval stages in vitro over a period of 7 days, to compare their immunological recognition in cattle and human sera, infected with species of Onchocerca. From the 156 sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) ES products or extracts, protein bands showed different patterns between female and male products. A comparison of antibody recognition of the different ES products by sera from infected cattle and humans, when analysed by enzyme-linked immunosorbent assay (ELISA), revealed a relatively higher reactivity of the female somatic extract to human and cattle sera compared to ES products of both genders. Nevertheless, similar reactivity of the O. ochengi male and female ES products to human and cattle sera was noticed. As a result, the interaction of ES products with the surface of the host and immune system often led to host responses, including the generation of antibodies. The O. ochengi ES products are therefore good sources of potential immunogenic proteins. The identification of these ES products is in progress, with the aim of developing vaccine candidates against human onchocerciasis.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achukwi, M.D., Harnett, W., Enyong, P. & Renz, A. (2007) Successful vaccination against Onchocerca ochengi infestation in cattle using live Onchocerca volvulus infective larvae. Parasite Immunology 23, 113116.Google Scholar
Ajonina-Ekoti, I., Ndjonka, D., Manchang, T.K., Wilbertz, M., Younis, A.E., Boursou, D., Kurosinski, M.A., Eberle, R., Lüersen, K., Perbandt, M., Breloer, M., Brattig, N.W. & Liebau, E. (2012) Functional characterization and immune recognition of the extracellular superoxide dismutase from the human pathogenic parasite Onchocerca volvulus (OvEC-SOD). Acta Tropica 124, 1526.Google Scholar
Ali, M.M., Mukhtar, M.M., Baraka, O.Z., Homeida, M.M., Kheir, M.M. & Mackenzie, C.D. (2002) Immunocompetence may be important in the effectiveness of Mectizan (ivermectin) in the treatment of human onchocerciasis. Acta Tropica 84, 4953.Google Scholar
Awadzi, K., Boakye, D.A., Edwards, G., Opoku, N.O., Attah, S.K., Osei-Atweneboana, M.Y., Lazdins-Helds, J.K., Ardrey, A.E., Addy, E.T., Quartey, B.T., Ahmed, K., Boatin, B.A. & Soumbey-Alley, E.W. (2004) An investigation of persistent microfilaridermias despite multiple treatments with ivermectin, in two onchocerciasis-endemic foci in Ghana. Annals of Tropical Medicine and Parasitology 98, 231249.Google Scholar
Baldo, L., Desjardins, C.A., Russell, J.A., Stahlhut, J.K. & Werren, J.H. (2010) Accelerated microevolution in an outer membrane protein (OMP) of the intracellular bacteria Wolbachia. BMC Evolutionary Biology 10, 48.Google Scholar
Brattig, N.W., Krawietz, I., Abakar, A.Z., Erttmann, K.D., Kruppa, T.F. & Massougbodji, A. (1994) Strong IgG isotypic antibody response in sowda type onchocerciasis. Journal of Infectious Diseases 170, 955961.Google Scholar
Büttner, D.W., Wanji, S., Bazzocchi, C., Bain, O. & Fischer, P. (2003) Obligatory symbiotic Wolbachia endobacteria are absent from Loa loa. Filarial Journal 2, 110.Google Scholar
Cho-Ngwa, F., Daggfeldt, A., Titanji, V.P.K. & Grönvik, K.O. (2005) Preparation and characterization of specific monoclonal antibodies for the detection of adult worm infections in onchocerciasis. Hybridoma 24, 8.Google Scholar
Crump, A. & Ōmura, S. (2011) Ivermectin, ‘wonder drug’ from Japan: the human use perspective. Proceedings of the Japan Academy of Sciences 87, 1328.Google Scholar
Dafa'alla, T.H., Ghalib, H.W., Abdelmageed, A. & Williams, J.F. (1992) The profile of IgG and IgG subclasses of onchocerciasis patients. Clinical and Experimental Immunology 88, 258263.Google Scholar
Duke, B.O.L. (1968) The intake and transmissibility of Onchocerca volvulus microfilariae by Similium damnosum fed on patients treated with diethylcarbamazine, suramin or Mel W. Bulletin of the World Health Organisation 39, 169178.Google Scholar
Falcone, F.H., Loke, P., Zang, X., MacDonald, A.S., Maizels, R.M. & Allen, J.E. (2001) A Brugia malayi homolog of macrophage migration inhibitory factor reveals an important link between macrophages and eosinophil recruitment during nematode infection. Journal of Immunology 167, 53485354.Google Scholar
Franck, G.R., Wisnewki, N., Brandt, K.S., Carter, C.R., Jenninqs, N.S. & Selkirk, M.E. (1999) Molecular cloning of the 22–24 kDa excretory–secretory 22U protein of Dirofilaria immitis and other filarial nematode parasites. Molecular and Biochemical Parasitology 98, 297302.Google Scholar
Ghedin, E., Hailemariam, T., DePase, J.V., Zhang, X., Oksov, Y., Unnasch, T.R. & Lustigman, S. (2009) Brugia malayi gene expression in response to the targeting of the Wolbachia endosymbiont by tetracycline treatment. PLoS Neglected Tropical Diseases 3, 115.Google Scholar
Hartmann, W., Brenz, Y., Manchang, T.K., Ajonina-Ekoti, I., Brattig, N.W., Liebau, E. & Breloer, M. (2013) Nematode-derived proteins suppress proliferation and cytokine production of antigen-specific T cells via induction of cell death. PloS One 8, 112.Google Scholar
Hewitson, J.P., Harcus, Y.M., Curwen, R.S., Dowle, A.A., Atmadja, A.K., Ashton, P.D., Wilson, A. & Maizels, R.M. (2008) The secretome of the filarial parasite, Brugia malayi: proteomic profile of adult excretory–secretory products. Molecular and Biochemical Parasitology 160, 821.Google Scholar
Hise, A.G., Gilette-Ferguson, I. & Pearlman, E. (2004) The role of endosymbiotic bacteria Wolbachia bacteria in filarial disease. Cellular Microbiology 6, 97104.Google Scholar
Langworthy, N.G., Renz, A., Mackenstedt, U., Henkle-Dührsen, K., Bronsvoort, M.B. de, C., Tanya, V.N., Donnelly, M.J. & Trees, A.J. (2000) Macrofilaricidal activity of tetracycline against the filarial nematode Onchocerca ochengi: elimination of Wolbachia precedes worm death and suggests a dependent relationship. Proceedings of Royal Society of London series – B Biological Sciences 267, 10631069.Google Scholar
Maizels, R.M., Hewitson, J.P., Murray, J., Harcus, Y.M., Dayer, B., Filbey, K.J., Grainger, J.R., McSorley, H.J., Reynolds, L.A. & Smith, K.A. (2011) Immune modulation and modulators in Heligmosomoides polygyrus infection. Experimental Parasitology 132, 7689.Google Scholar
Manchang, T.K., Ajonina-Ekoti, I., Ndjonka, D., Eisenbarth, A., Achukwi, M.D., Brattig, N.W., Liebau, E. & Breloer, M. (2015) Immune recognition of Onchocerca volvulus proteins in the human host and animal models of onchocerciasis. Journal of Helminthology 89, 375386.Google Scholar
McSorley, H.J., Hewitson, J.P. & Maizels, R.M. (2013) Immunomodulation by helminth parasites: defining mechanism and mediators. International Journal of Parasitology 43, 301310.Google Scholar
Morales-Hojas, R., Cheke, R.A. & Post, R.J. (2007) A preliminary analysis of the population genetics and molecular phylogenetics of Onchocerca volvulus (Nematoda: Filarioidea) using nuclear ribosomal second internal transcribed spacer sequences. Memória do Instituto Oswaldo Cruz 102, 879882.Google Scholar
Moreno, Y. & Geary, T.G. (2008) Stage- and gender-specific proteomic analysis of Brugia malayi excretory–secretory products. PloS Neglected Tropical Diseases 2, 112.Google Scholar
Mpagi, J.M., Büttner, D.W., Tischendorf, F.W., Erttmann, K.D. & Brattig, N.W. (2000) Humoral respones to a secretory Onchocerca volvulus protein: difference in the pattern of antibody isotypes to recombinant Ov20/OvS1 in generalized and hyperreactive onchocerciasis. Parasite Immunology 22, 455460.Google Scholar
Ndjonka, D., Agyare, C., Lüersen, K., Djafsia, B., Achukwi, D., Nukenine, E.N., Hensel, A. & Liebau, E. (2011) In vitro activity of Cameroonian and Ghanaian medicinal plants on parasitic (Onchocerca ochengi) and free-living (Caenorhabditis elegans) nematodes. Journal of Helminthology 85, 304312.Google Scholar
OMS (Organisation Mondiale de la Santé). (2011) Agir pour réduire l'impact des maladies tropicales négligées: Premier rapport de l'OMS sur les maladies tropicales négligées. pp. 124129. Geneva, OMS.Google Scholar
Osei-Atweneboana, M., Eng, J.K.L., Boakye, D.A., Gyapong, J.O. & Prichard, R.K. (2007) Prevalence and intensity of Onchocerca volvulus infection and efficacy of ivermectin in endemic communities in Ghana: a two-phase epidemiological study. Lancet 369, 20212029.Google Scholar
Pfarr, K.M. & Hoerauf, A.M. (2006) Antibiotics which target the Wolbachia endosymbionts of filarial parasites: a new strategy for control of filariasis and amelioration of pathology. Mini-reviews in Medical Chemistry 6, 203210.Google Scholar
Plasier, A.P., van Oortmarssen, G.J., Remme, J. & Habbema, J.D.F. (1991) The reproductive lifespan of Onchocerca volvulus in West African savanna. Acta Tropica 48, 271284.Google Scholar
Schulz-Key, H. & Karam, M. (1986) Periodic reproduction of Onchocerca volvulus. Parasitology Today 10, 284286.Google Scholar
Soblik, H. (2009) Proteomic analysis of excretory/secretory proteins from parasitic and free-living stages of Strongyloides ratti. PhD thesis, Department of Chemistry, University of Hamburg.Google Scholar
Tanya, V.N., Wandji, S., Kamgno, J., Achukwi, D.M. & Enyong, P.A.I. (2013) Recent advances in onchocerciasis research and implications for control. Yaounde, The Cameroon Academy of Sciences.Google Scholar
Townson, S., Tagboto, S., McGarry, H.F., Egerton, G.L. & Taylor, M.J. (2006) Onchocerca parasites and Wolbachia endosymbionts: evaluation of a spectrum of antibiotic types for activity against Onchocerca gutturosa in vitro. Filaria Journal 5, 19.Google Scholar
Vermeire, J.J., Cho, Y., Lolis, E., Bucala, R. & Cappello, M. (2008) Orthologs of macrophage migration inhibitory factor from parasitic nematodes. Trends in Parasitology 24, 355363.Google Scholar
Virginio, V.G., Monteiro, K.M., Drumond, F., de Carvalho, M.O., Vargas, D.M., Zaha, A. & Ferreira, H.B. (2012) Excretory/secretory products from in vitro-cultured Echinococcus granulosus protoscoleces. Molecular and Biochemical Parasitology 183, 1522.Google Scholar
WHO (World Health Organisation). (1995) Onchocerciasis and its control. Report of a WHO Expert Committee on Onchocerciasis control. World Health Organisation Technical Report Series 852, 1104.Google Scholar