Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T20:38:43.280Z Has data issue: false hasContentIssue false

Post-impact deposits in Tvären, a marine Middle Ordovician crater south of Stockholm, Sweden

Published online by Cambridge University Press:  01 May 2009

M. Lindström
Affiliation:
Department of Geology and Geochemistry, University of Stockholm, S-106 91 Stockholm, Sweden
T. Flodén
Affiliation:
Department of Geology and Geochemistry, University of Stockholm, S-106 91 Stockholm, Sweden
Y. Grahn
Affiliation:
Department of Geology and Geochemistry, University of Stockholm, S-106 91 Stockholm, Sweden
B. Kathol
Affiliation:
Department of Geology and Geochemistry, University of Stockholm, S-106 91 Stockholm, Sweden

Abstract

The well-preserved Tvären crater is noteworthy for being one of a small number of Early and Middle Ordovician impact structures formed in a marine environment. It is demonstrated to be an impact structure by the presence of a breccia lens, consisting of crystalline basement rocks, and shocked quartz. The breccia lens formed under dry-hot conditions after expulsion of sea-water by the impact. Resurging sea-water thereupon deposited a positively graded, 60 m thick turbidite-like unit. This graded resurge deposit is a previously unknown feature, to be expected in open-sea impacts. Breccia in the lower part of this graded deposit contains fragments of a remarkably complete orthoceratite limestone succession that existed at the site of impact, resting on non-lithified sand of probably Early to earliest Middle Cambrian age. A sedimentary succession was deposited inside the crater at depths decreasing from more than 200 m in the initial stages to some 100 m at the time of deposition of the youngest preserved beds. The environment within the crater thus favoured deposition of an essentially complete stratigraphic succession with depth-controlled palaeoecology for a significant time interval after the impact. Whereas planktonic members, like graptolites and chitinozoa, are present throughout the post-impact succession, and asaphids, almost as persistent, became established at an early date, burrowers were somewhat reluctant to enter and remopleuridids and small strophomenids came in at a late stage. We suggest as a result of this study that structures formed by impact may offer unique information about the palaeogeology and palaeoenvironment of the region hit by the impact.

Type
Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexopoulos, J. S., Grieve, R. A. F. & Robertson, P. B. 1988. Microscopic lamellar deformation features in quartz: Discriminative characteristics of shock-generated varieties. Geology 16, 796–99.2.3.CO;2>CrossRefGoogle Scholar
Allen, J. R. L. 1970. The sequence of sedimentary structures in turbidites with special reference to dunes. Scottish Journal of Geology 6, 146–61.Google Scholar
Allen, J. R. L. 1984. Sedimentary structures, their character and physical basis. Developments in Sedimentology 30. Elsevier.Google Scholar
Bergström, S. M. 1961. Conodonts from the Ludibundus Limestone (Middle Ordovician) of the Tvären area (S.E. Sweden). Arkiv för Mineralogi och Geologi 3, 164.Google Scholar
Bergström, S. M. 1971. Conodont biostratigraphy of the Middle and Upper Ordovician of Europe and eastern North America. In Symposium on Conodont Biostratigraphy (eds Sweet, W. C. and Bergström, S. M.), pp. 86162. Geological Society of America Memoir no. 127.Google Scholar
Bergström, S. M. & Nilsson, R. 1974. Age and correlation of the Middle Ordovician bentonites on Bornholm. Bulletin of the Geological Society of Denmark 23, 2748.Google Scholar
Bouma, A. H. 1962. Sedimentology of Some Flysch Deposits: a graphic approach to fades interpretation. Amsterdam: Elsevier.Google Scholar
Broch, O. A. 1945. Gardnosbreksjen i Hallingdal. Norsk Geologisk Tidsskrift 25, 1625.Google Scholar
Bruun, Å. & Dahlman, B. 1982. Den paleozoiska berggrunden. In Beskrivning till berggrundskartan Hjo NO. Description to the map of solid rocks Hjo NO (by Wikman, H., Bruun, Å., Dahlman, B. & Vidal, G.), pp. 76109. Sveriges Geologiska Undersökning Serie Af 120.Google Scholar
Flodén, T., Tunander, P. & Wickman, F. E. 1989. The Tvären Bay structure, an astrobleme in southeastern Sweden. Geologiska Föreningens i Stockholm Förhandlingar 108, 225–34.CrossRefGoogle Scholar
Grahn, Y. & Nölvak, J. 1993. Chitinozoan dating of Ordovician impact events in Sweden and Estonia. A preliminary note. Geologiska Föreningens i Stockholm Forhandlingar 115, 263–4.Google Scholar
Grieve, R. A. F. 1987. Terrestrial impact structures. Annual Review of Earth and Planetary Sciences 15, 245–70.CrossRefGoogle Scholar
Hagenfeldt, S. 1989. Lower Cambrian acritarchs from the Baltic Depression and south-central Sweden, taxonomy and biostratigraphy. Stockholm Contributions in Geology no. 41. 176 pp.Google Scholar
Holmer, L. 1989. Middle Ordovician phosphatic inarticulate brachiopods from Västergötland and Dalarna, Sweden. Fossils and Strata no. 26. 172 pp.Google Scholar
Jaanusson, V. 1961. Discontinuity surfaces in limestones. Bulletin of the Geological Institutions of the University of Uppsala 40, 221–41.Google Scholar
Jackson, J. A. & Bates, R. L. 1987. Glossary of Geology – Third Edition. Alexandria, Va.: American Geological Institute.Google Scholar
Kala, E., Puura, V. & Suuroja, K. 1984. Main features of the Kärdla buried crater (Russian with English summary). Eesti Teaduste Akadeemia Toimetised Geoloogia 33, 17.Google Scholar
Laurén, L., Lehtovaara, J., Boström, R. & Tynni, R. 1978. On the geology and Cambrian sediments of the circular depression at Söderfjärden, western Finland. Geological Survey of Finland Bulletin 297.Google Scholar
Lindström, M. 1979. Diagenesis of Lower Ordovician hardgrounds in Sweden. Geologica et Palaeontologica 13, 930.Google Scholar
Lindström, M. & Sturkell, F. F. 1992. Geology of the Early Palaeozoic Lockne impact structure, Central Sweden. Tectonophysics 216, 169–86.Google Scholar
Männil, R. 1966. Istoriya razvitiya Baltiyskogo Basseyna v ordovike. Eesti NSV Teaduste Akadeemia Geoloogia Instituut.Google Scholar
Martinsson, A. 1974. The Cambrian of Norden. In Lower Palaeozoic rocks of the World, Vol. 2. Cambrian of the British Isles, Norden and Spitsbergen. (ed. Holland, C. H.), pp. 185283. London: Wiley-Interscience.Google Scholar
Melosh, H. J. 1989. Impact cratering. New York: Oxford Press.Google Scholar
Paul, C. R. C. & Bockelie, J. F. 1983. Evolution of functional morphology of the cystoid Sphaeronites in Britain and Scandinavia. Palaeontology 26, 687734.Google Scholar
Puura, V. & Suuroja, K. 1992. Ordovician impact crater at Kärdla, Island of Hiiumaa, Estonia. Tectonophysics 216, 143–56.Google Scholar
Thorslund, P. 1940. On the Chasmops series of Jemtland and Södermanland (Tvären). Sveriges Geologiska Undersökning Serie C 436.Google Scholar
Verschure, R. H., Maijer, C., Andriessen, P. A. M., Boelrijk, N. A. I. M., Hebeda, E. H., Priem, H. N. A. & Verdurmen, E. A. T. 1983. Dating explosive volcanism perforating the Precambrian basement in southern Norway. Norges Geologiske Undersokelse 380, 3549.Google Scholar
Walker, R. G. 1965. The origin and significance of the internal sedimentary structures of turbidites. Proceedings of the Yorkshire Geological Society 35, 132.Google Scholar
Wickman, F. E. 1988. Possible impact structures in Sweden. In Deep Drilling in Crystalline Bedrock, Volume 1: The Deep Gas Drilling in the Siljan Impact Structure, Sweden and Astroblemes (eds Boden, A. and Eriksson, K. G.), pp. 298327. Springer.Google Scholar