Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T16:11:32.049Z Has data issue: false hasContentIssue false

14 - Theories of space-time in modern physics

from 4 - Philosophy and the new physics

Published online by Cambridge University Press:  28 March 2008

Luciano Boi
Affiliation:
Université de Québec à Montréal
Thomas Baldwin
Affiliation:
University of York
Get access

Summary

INTRODUCTION

Among the most important events of twentieth-century physics, we must surely count the development of the special and the general theories of relativity by Einstein in 1905 and 1916, and that of quantum mechanics, which was worked out about ten years later by Bohr, Heisenberg, Schrödinger, and de Broglie. Owing to these theories, the physicist’s conception of space-time underwent two major upheavals.

Although they apply on different scales, the general theory of relativity and the quantum field theory play a fundamental role in describing the natural world, so a complete description of nature must encompass both of them. The formal attempt to quantise general relativity, however, leads to nonsensical infinite formulas. In the sixties non-Abelian gauge theory emerged as a framework for describing all natural forces except gravity; however, at the same time, the inconsistency between general relativity and quantum field theory emerged clearly as the limitation of twentieth-century physics. The resulting problem is a theorists’ problem par excellence: experiments provide little help, and the inconsistency illustrates the intermingling of philosophical, mathematical, and physical thought.

It is a fact of great significance that every physical theory of some generality and scope, whether it is a classical or a quantum theory, a particle or a field theory, presupposes a space-time geometry for the formulation of its laws and for its interpretation, and the choice of this geometry predetermines to some extent the laws which are taken to govern the behaviour of matter. Thus Newton’s classical mechanics (and especially its law of gravitation) is based on the assumption of an absolute simultaneity relation between events and a Euclidean geometry; similarly, the physical principle of the universal proportionality of inertial and gravitational mass, as recognised by Einstein between 1907 and 1915, requires the assignment of a non-integrable, that is, path-dependent, linear connection with non-vanishing curvature to space-time (the law of parallel displacement).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, R., Bazin, M., and Schiffer, M. (1965). Introduction to General Relativity, San Francisco: McGraw-Hill.Google Scholar
Barbour, J. B. (1982). ‘Relational Concepts of Space and Time’, The British Journal for the Philosophy of Science 33.CrossRefGoogle Scholar
Bergman, P. G. (1942). Introduction to the Theory of Relativity, Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Bohm, D. (1965). The Special Theory of Relativity, New York: W. A. Benjamin.CrossRefGoogle Scholar
Boi, L. (1995). Le problème mathématique de l espace. Une quête de l'intelligible, Berlin: Springer.Google Scholar
Boi, L. (1999). ‘Some Mathematical, Epistemological and Historical Reflections on the Relationship between Geometry and Reality, Spacetime Theory and the Geometrization of Theoretical Physics, from B. Riemann to H. Weyl and Beyond’, Preprint C.A.M.S. (EHESS, Paris) no. 176.Google Scholar
Cao, T. Yu (1997). Conceptual Developments of 20th Century Field Theories, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Cartan, E. (1923). ‘Sur les variétés à connexion affine et la théorie de la relativité généralisée’, Annales de l Ecole Normale Supérieure 40.Google Scholar
Clifford, W. K. (1876). ‘On the Space-Theory of Matter’, Cambridge Philosophical Society Proceedings 2.Google Scholar
Cohen-Tannoudji, G. and Spiro, M. (1986). La matière-espace-temps, Paris: Fayard.Google Scholar
Coleman, R. A. and Kort, H. (1995). ‘A New Semantics for the Epistemology of Geometry. I: Modeling Spacetime Structure’, Erkenntnis 2, 42. (Special Issue on ‘Reflections on Spacetime: Foundations, Philosophy, History’, ed. Majer, U. and Schmidt, H.-J..)Google Scholar
Damour, Th. (1995). ‘General Relativity and Experiment’ in Iagolnitzer, D. (ed.), Proceedings of the XIth International Congress of Mathematical Physics, Boston: International Press.Google Scholar
Earman, J., Glymour, C., and Stachel, J. (eds.) (1977). Foundations of Space-Time Theories, Minneapolis: University of Minnesota Press.Google Scholar
Eddington, A. (1924). The Mathematical Theory of Relativity, Cambridge: Cambridge University Press.Google Scholar
Ehlers, J. (1973). ‘The Nature and Structure of Spacetime’ in Mehra, J. (ed.), The Physicist’s Conception of Nature, Dordrecht: Reidel.Google Scholar
Einstein, A. and Infeld, L. (1938). The Evolution of Physics, New York: Simon and Schuster.Google Scholar
Einstein, A. (1905). ‘Zur Elektrodynamik bewegter Körper’, Annalen der Physik 17.Google Scholar
Einstein, A. (1916). ‘Die Grundlagen der allgemeinen Relativitätstheorie’, Annalen der Physik 4, 49.Google Scholar
Einstein, A. (1956). The Meaning of Relativity, Princeton, NJ: Princeton University Press.Google Scholar
Ellis, G. F. R. and Williams, R. M. (1988). Flat and Curved Space-Times, Oxford: Clarendon Press.Google Scholar
Feynman, R. (1967). The Character of Physical Laws, Cambridge, MA: The MIT Press.Google Scholar
Fock, V. (1959). The Theory of Space, Time and Gravitation, London: Pergamon Press.Google Scholar
Friedman, M. (1983). Foundations of Space-Time Theories: Relativistic Physics and the Philosophy of Science, Princeton, NJ: Princeton University Press.Google Scholar
Geroch, R. P. and Horowitz, G. T. (1979). ‘Global structures of spacetimes’ in Hawking, S. W. and Israel, W. (eds.), General Relativity. An Einstein Centenary Survey, Cambridge: Cambridge University Press.Google Scholar
Graves, J. C. (1971). The Conceptual Foundations of Contemporary Relativity Theory, Cambridge, MA: The MIT Press.Google Scholar
Grünbaum, A. (1973). Philosophical Problems of Space and Time, 2nd, enlarged edn. Dordrecht: Reidel.CrossRefGoogle Scholar
Hawking, S. W. and Ellis, G. F. R. (1973). The Large Scale Structure of Space-Time, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Holton, G. (1960). ‘On the Origins of the Special Theory of Relativity’, American Journal of Physics 28.CrossRefGoogle Scholar
Kanitscheider, B. (1972). ‘Die Rolle der Geometrie innerhalb physikalischer Theorien’, Zeitschrift für Philosophische Forschung 26.Google Scholar
Kobayashi, S. and Nomizu, K. (1962). Foundations of Differential Geometry, 2 vols. New York: Wiley.Google Scholar
Lichnerowicz, A. (1955). Théories relativistes de la gravitation et de l'électromagnétisme, Paris: Masson.Google Scholar
Lindsay, R. B. and Margenau, H. (1957). Foundations of Physics, New York: Dover.Google Scholar
Lorentz, H. A., Einstein, A., Minkowski, H., and Weyl, H. (1923). The Principle of Relativity. A Collection of Original Memoirs on the Special and General Theory of Relativity, London: Methuen.Google Scholar
Lorentz, H. A. (1905). Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern, Leiden: Brill.Google Scholar
Mach, E. (1883). Die Mechanik in ihrer Entwicklung historisch-kritisch dargestellt, Leipzig: Brockhaus. Trans. 1893 McCormack, T., The Science of Mechanics, Chicago: Open Court.Google Scholar
Mainzer, K. (1994). ‘Philosophie und Geschichte von Raum und Zeit’, in Ausdretsch, J. and Mainzer, K. (eds.), Philosophie und Physik der Raum-Zeit, Zurich: Bibliographische Institut.Google Scholar
Malamet, D. (1997). ‘Causal theories of time and the conventionality of simultaneity’, Noûs 11.Google Scholar
Minkowski, H. (1909). ‘Raum und Zeit’, Physikalische Zeitschrift 10.Google Scholar
Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973), Gravitation, San Francisco: Freeman.Google Scholar
Paty, M. (1993). Einstein Philosophe, Paris: Presses Universitaires de France.Google Scholar
Pauli, W. (1981). Theory of Relativity, New York: Dover. 1st German edn 1921.Google Scholar
Penrose, R. (1968). ‘Structure of Space-Time’, in DeWitt, C. M. and Wheeler, J. A. (eds.), Battelle Rencontres. 1967 Lectures in Mathematics and Physics, New York: Benjamin.Google Scholar
Petitot, J. (1992). ‘Actuality of Transcendental Aesthetics for Modern Physics’, in Boi, L. et al. (eds.), A Century of Geometry: Epistemology, History and Mathematics, Heidelberg: Springer Verlag.Google Scholar
Poincaré, H. (1902). La Science et l'Hypothèse, Paris: Flammarion.Google Scholar
Poincaré, H. (1906). ‘Sur la dynamique de l'électron’, Rend. Circ. Mat. Palermo 21.CrossRefGoogle Scholar
Regge, T. (1961). ‘General relativity without coordinates’, Rivista del Nuovo Cimento 19.Google Scholar
Reichenbach, H. (1958). The Philosophy of Space and Time, transl. Reichenbach, M. and Freund, J., New York: Dover.Google Scholar
Ricci, G. and Levi-Civita, T. (1901). ‘Méthodes de calcul différentiel absolu et leurs applications’, Mathematische Annalen 54.Google Scholar
Riemann, B. (1867). ‘Über die Hypothesen, welche der Geometrie zu Grunde liegen’, Abhandlungen der Königlichen Gesellschaft der Wissenschaften zur Göttingen 13.Google Scholar
Rindler, W. (1960). Special Relativity, Edinburgh: Oliver & Boyd.Google Scholar
Schilpp, P. A. (ed.) (1949). Albert Einstein: Philosopher-Scientist, Evanston, IL: The Library of Living Philosophers.Google Scholar
Schrödinger, E. (1954). Space-Time Structure, Cambridge: Cambridge University Press.Google Scholar
Souriau, J.-M. (1964). Géométrie et Relativité, Paris: Hermann.Google Scholar
Spivak, M. (1979). A Comprehensive Introduction to Differential Geometry, Berkeley, CA: Publish or Perish.Google Scholar
Stachel, J. (1995). ‘History of Relativity’ in Brown, L. M., Pais, A., and Pippard, B.Sir (eds.), Twentieth Century Physics, vol. I, Bristol: Institute of Physics Publ..Google Scholar
Stamatescu, I.-O. (1994). ‘Quantum Field Theory and the Structure of Space-Time’ in Stamatescu, I.-O. (ed.), Philosophy, Mathematics and Modern Physics, Heidelberg: Springer Verlag.Google Scholar
Synge, J. L. (1955). Relativity: The Special Theory, Amsterdam: North-Holland.Google Scholar
Synge, J. L. (1964). The Petrov Classification of Gravitational Fields, Dublin: Dublin Institute for Advanced Studies.Google Scholar
Torretti, R. (1996), Relativity and Geometry, New York: Dover (1st edn Pergamon, 1983).Google Scholar
Trautman, A., Pirani, F. A. E., and Bondi, H. (1965). Lectures on General Relativity, Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Trautman, A. (1973). ‘Theory of Gravitation’ in Mehra, J. (ed.), The Physicist’s Conception of Nature, Dordrecht: Reidel.Google Scholar
Weinberg, S. (1918). Raum-Zeit-Materie, Berlin: Springer Verlag. 4th edn (1921).Google Scholar
Weinberg, S. (1973). Gravitation and Cosmology. Principles and Applications of the General Theory of Relativity, New York: Wiley.Google Scholar
Weyl, H. (1918). Transl. Brose, H. L., Space-Time-Matter, London: Methuen.Google Scholar
Wheeler, J. A. (1962). Geometrodynamics, New York and London: Academic Press.Google Scholar
Zahar, E. (1989). Einstein’s Revolution: A Study in Heuristic, La Salle, IL: Open Court.Google Scholar
Zeeman, E. C. (1967). ‘The Topology of Minkowski space’, Topology 6.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×