Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T10:55:28.981Z Has data issue: false hasContentIssue false

6 - Cytotoxic lymphocytes, apoptosis, and autoimmunity

Published online by Cambridge University Press:  03 March 2010

Pere Santamaria
Affiliation:
Department of Microbiology and Infectious Diseases and Julia McFarlane Diabetes Research Centre, The University of Calgary, Calgary, Canada
R. Chris Bleackly
Affiliation:
Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
Martin Holcik
Affiliation:
University of Ottawa
Eric C. LaCasse
Affiliation:
University of Ottawa
Alex E. MacKenzie
Affiliation:
University of Ottawa
Robert G. Korneluk
Affiliation:
University of Ottawa
Get access

Summary

Introduction

Cytotoxic lymphocytes – you cannot live without them, but sometimes you have trouble living with them.the Jeckyl and Hyde character of these cells relates to their ability to induce death in target cells. On the one hand, they can recognize and destroy pathogenic cells, such as those infected with viruses, but, on the other hand, they can also mistakenly turn their attention to normal cells, resulting in autoimmunity. Lymphocytes can kill, either through direct cell contact or via the secretion of cytokines, and, in the case of B lymphocytes, antibodies. These secreted proteins are important in killing and autoimmune disorders. They can act directly but often function via the activation and/or recruitment of lytic and inflammatory effector cells. Most of the discussion in this chapter, however, will focus on the pathways that involve close apposition of effector and target cells. A knowledge of the molecular killing mechanisms used by cytotoxic lymphocytes may allow us to develop novel strategies to either curb or amplify target cell destruction. The current models for apoptosis induced by cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells will be outlined, and some insights into which pathways are used in autoimmune disorders will be provided.

Over the last few years, it has become clear that CTLs and NK cells can kill via two distinct pathways. The first to be described involves the exocytosis of lytic proteins from dense granules in the cytoplasm of the effector cells toward the targets (Henkart, 1985).

Type
Chapter
Information
Apoptosis in Health and Disease
Clinical and Therapeutic Aspects
, pp. 188 - 218
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abiru, N. and Eisenbarth, G. (1999). Autoantibodies and autoantigens in type 1 diabetes: role in pathogenesis, prediction and prevention. Can. J. Diab. Care, 23, 59–65Google Scholar
Abreu-Martin, M., Vidrich, A., Lynch, D., and Targan, S. (1995). Divergent induction of apoptosis and IL-8 secretion in HT-29 cells in response to TNFα and ligation of Fas antigen. J. Immunol., 155, 4147–54Google ScholarPubMed
Alimonti, J. B., Shi, L., Baijal, P. K., and Greenberg, A. H. (2001). Granzyme B induces BID-mediated cytochrome c release and mitochondrial permeability transition. J. Biol. Chem., 276, 6974–82CrossRefGoogle ScholarPubMed
Allison, J. and Strasser, A. (1998). Mechanisms of beta cell death in diabetes: a minor role for CD95. Proc. Natl. Acad. Sci. USA, 95, 13818–22CrossRefGoogle ScholarPubMed
Amrani, A., Serra, P., Yamanouchi, J.et al. (2001). Expansion of the antigenic repertoire of a single T cell receptor upon T-cell activation. J. Immunol., 167, 655–66CrossRefGoogle Scholar
Amrani, A., Verdaguer, J., Anderson, B., Utsugi, T., and Bou, S. (1999). Perforin-independent beta cell destruction by diabetogenic CD8+ T lymphocytes in transgenic nonobese diabetic mice. J. Clin. Invest., 103, 1201–9CrossRefGoogle ScholarPubMed
Amrani, A., Verdaguer, J., Serra, P., Tafuro, S., Tan, R., and Santamaria, P. (2000a). Progression of autoimmune diabetes driven by avidity maturation of a T-cell population. Nature, 406, 739–42CrossRefGoogle Scholar
Amrani, A., Verdaguer, J., Thiessen, S., Bou, S., and Santamaria, P. (2000b). IL-1α, IL-1β, and IFN-γ mark beta cells for Fas-dependent destruction by diabetogenic CD4+ T-lymphocytes. J. Clin. Invest., 105, 459–68CrossRefGoogle Scholar
Anderson, B., Park, B. J., Verdaguer, J., Amrani, A., and Santamaria, P. (1999). Prevalent CD8(+) T cell response against one peptide/MHC complex in autoimmune diabetes. Proc. Natl. Acad. Sci. USA, 96, 9311–16CrossRefGoogle ScholarPubMed
Ando, K., Moriyama, T., Guidotti, L.et al. (1993). Mechanisms of class I restricted immunopathology: a transgenic mouse model of fulminant hepatitis. J. Exp. Med., 178, 1541CrossRefGoogle Scholar
Arnush, M., Hitmeier, M., Scarim, A., Marino, M., Manning, P., and Corbett, J. (1998a). IL-1 produced and released endogenously within human islets inhibits beta cell function. J. Clin. Invest., 102, 516–26CrossRefGoogle Scholar
Arnush, M., Scarim, A., Hitmeier, M., Kelly, C., and Corbett, J. (1998b). Potential role of resident islet macrophage activation in the initiation of autoimmune diabetes. J. Immunol., 160, 2684–91Google Scholar
Arscott, P. L. and Baker, J. R. (1998). Apoptosis and thyroiditis. Clin Immunol Immunopathol, 87, 207–17CrossRefGoogle ScholarPubMed
Arscott, P. L., Knapp, J., Rymaszewski, M.et al. (1997). Fas (APO-1, CD95)-mediated apoptosis in thyroid cells is regulated by a labile protein inhibitor. Endocrinology, 138, 5019–27CrossRefGoogle ScholarPubMed
Ashany, D., Savir, A., Bhardwaj, N., and Elkon, K. (1999). Dendritic cells are resistant to apoptosis through the Fas (CD95/APO-1) pathway. J. Immunol., 163, 5303–11Google ScholarPubMed
Atreya, R., Mudter, J., Finotto, S.et al. (2000). Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in Crohn's disease and experimental colitis in vivo. Nat. Med., 6, 583–8CrossRefGoogle ScholarPubMed
Babbe, H., Roers, A.Waisman, A.et al. (2000). Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J. Exp. Med., 192, 393–404CrossRefGoogle Scholar
Barry, M., Heibein, J. A., Pinkoski, M. J.et al. (2000). Granzyme B short-circuits the need for caspase 8 activity during granule-mediated cytotoxic T-lymphocyte killing by directly cleaving Bid. Mol. Cell. Biol., 20, 3781–94CrossRefGoogle ScholarPubMed
Blanas, E., Carbone, F., Allison, J., Miller, J., and Heath, W. (1996). Induction of autoimmune diabetes by oral administration of autoantigen. Science, 274, 1707–9CrossRefGoogle ScholarPubMed
Boirivant, M., Fuss, I., Chu, A.et al. (1998). Oxazolone colitis: a murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4. J. Exp. Med., 188, 1929–39CrossRefGoogle ScholarPubMed
Boldin, M. P., Goncharov, T. M., Goltsev, Y. V., and Wallach, D. (1996). Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell, 85, 803–15CrossRefGoogle ScholarPubMed
Bottazzo, G. F., Dean, B. M., McNally, J. M., McKay, E. H., Swift, P. G. F., and Gamble, D. R. (1985). In situ characterization of autoimmune phenomenon: an expression of HLA molecules in the pancreas of diabetic insulinitis. N. Engl. J. Med., 313, 353–60CrossRefGoogle Scholar
Bouillet, P., Metcalf, D., Huang, D.et al. (1999). Pro-apoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science, 286, 1735–8CrossRefGoogle Scholar
Bouillet, P., Purton, J. F., Godfrey, D. I.et al. (2002). BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature, 415, 922–6CrossRefGoogle ScholarPubMed
Bretz, J. D., Arscott, P. L., Myc, A., and Baker, J. R. (1999a). Inflammatory cytokine regulation of Fas-mediated apoptosis in thyroid follicular cells. J. Biol. Chem., 274, 25433–8CrossRefGoogle Scholar
Bretz, J. D., Rymaszewski, M., Arscott, P. L.et al. (1999b). TRAIL death pathway expression and induction in thyroid follicular cells. J. Biol. Chem., 274, 23627–32CrossRefGoogle Scholar
Brossart, P. and Bevan, M. (1996). Selective activation of Fas/Fas ligand-mediated cytotoxicity by a self peptide. J. Exp. Med., 183, 2449CrossRefGoogle ScholarPubMed
Browne, K. A., Blink, E., Sutton, V. R., Froelich, C. J., Jans, D. A., and Trapani, J. A. (1999). Cytosolic delivery of granzyme B by bacterial toxins: evidence that endosomal disruption, in addition to transmembrane pore formation, is an important function of perforin. Mol. Cell Biol., 19, 8604–15CrossRefGoogle ScholarPubMed
Cao, W., Tykodi, S., Esser, M., Braciale, V., and Braciale, T. (1995). Partial activation of CD8+ T cells by a self-derived peptide. Nature, 378, 295–8CrossRefGoogle ScholarPubMed
Chan, F. and Lenardo, M. (2000). A crucial role for p80 TNF-R2 in amplifying p60 TNF3-R1 apoptosis signals in T lymphocytes. Eur. J. Immunol., 30, 652–603.0.CO;2-L>CrossRef
Chervonsky, A., Wang, Y., Wong, F.et al. (1997). The role of Fas in autoimmune diabetes. Cell, 89, 17–24CrossRefGoogle ScholarPubMed
Chinnaiyan, A. M., Tepper, C. G., Seldin, M. F.et al. (1996). FADD/MORT1 is a common mediator of CD95 (Fas/APO-1) and tumor necrosis factor receptor-induced apoptosis. J. Biol. Chem., 271, 4961–5Google ScholarPubMed
Choi, C., Xu, X., Oh, J.-W.et al. (2001). Fas-induced expression of chemokines in human glioma cells: involvement of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein-kinase. Cancer Res., 61, 3084–3091Google ScholarPubMed
Choy, E. H. and Panayi, G. S. (2001). Mechanisms of disease: cytokine pathways and joint inflammation in rheumatoid arthritis. N. Engl. J. Med., 344, 907–16CrossRefGoogle Scholar
Christianson, S., Shultz, L., and Leiter, E. (1993). Adoptive transfer of diabetes into immunodeficient NOD-scid/scid mice. Relative contributions of CD4+ and CD8+ T-cells from diabetic versus prediabetic NOD.NON-thy-1a donors. Diabetes, 42, 44–55CrossRefGoogle ScholarPubMed
Chung, I., Norris, J., and Benveniste, E. (1991). Differential tumor necrosis factor-alpha expression by astrocytes from experimental allergic encephalomyelitis-susceptible and -resistant rat strains. J. Exp. Med., 173, 801–11CrossRefGoogle ScholarPubMed
Corazza, N., Eichenberger, S., Eugster, H. P., and Mueller, C. (1999). Nonlymphocyte-derived tumor necrosis factor is required for induction of colitis in recombination activating gene (RAG)2(–/–) mice upon transfer of CD4(+)CD45RB(hi) T cells. J. Exp. Med., 190, 1479–92CrossRefGoogle ScholarPubMed
Cottet, S., Dupraz, P., Hamburger, F., Dolci, W., Jaquet, M., and Thorens, B. (2001). SOCS-1 protein prevents Janus kinase/STAT-dependent inhibition of beta cell insulin gene transcription and secretion in response to interferon-γ. J. Biol. Chem., 276, 25862–70CrossRefGoogle ScholarPubMed
Darmon, A., Nicholson, D., and Bleackley, R. (1995). Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. Nature, 377, 446–88CrossRefGoogle ScholarPubMed
Delovitch, T. and Singh, B. (1997). The nonobese diabetic mouse as a model of autoimmune diabetes: immune disregulation gets the NOD. Immunity, 7, 727–38CrossRefGoogle Scholar
Deveraux, Q., and Reed, T. (1999). IAP family proteins – suppressors of apoptosis. Genes. Dev., 13, 239–52CrossRefGoogle Scholar
DiLorenzo, T., Graser, R., Ono, T.et al. (1998). Major histocompatibility complex class I-restricted T cells are required for all but the end stages of diabetes development in nonobese diabetic mice and use prevalent T cell receptor α chain gene rearrangement. Proc. Natl. Acad. Sci. USA, 95, 12538–43CrossRefGoogle ScholarPubMed
Dittel, B., Merchant, R., and Janeway, C. A. Jr. (1999). Evidence for Fas-dependent and Fas-independent mechanisms in the pathogenesis of experimental autoimmune encephalomyelitis. J. Immunol., 162, 6392–400Google ScholarPubMed
Dressel, A., Chin, J. L., Sette, A., Gausling, R., Hollsberg, P., and Hafler, D. A. (1997). Autoantigen recognition by human CD8 T cell clones. Enhanced agonist response induced by altered peptide ligands. J. Immunol., 159, 4943–51Google ScholarPubMed
Du, C., Fang, M., Li, Y., Li, L., and Wang, X. (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell, 102, 33–42CrossRefGoogle ScholarPubMed
Dupraz, P., Cottet, S., Hamburger, F., Dolci, W., Felley-Bosco, E., and Thorens, B. (2000). Dominant negative MyD88 proteins inhibit interleukin-1 beta/interferon-gamma-mediated induction of nuclear factor kappa B-dependent nitrite production and apoptosis in beta cells. J. Biol. Chem., 275, 37672–8CrossRef
Dupraz, P., Rinsch, C., Pralong, W.et al. (1999). Lentivirus-mediated Bcl-2 expression in beta TC-tet cells improves resistance to hypoxia and cytokine-induced apoptosis while preventing in vitro and in vivo control of insulin secretion. Gene. Ther., 6, 1160–69CrossRef
Elson, C. J. and Barker, R. N. (2000). Helper T cells in antibody-mediated, organ-specific autoimmunity. Curr. Opin. Immunol., 12, 664–9CrossRefGoogle ScholarPubMed
Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., and Nagata, S. (1998). A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature, 391, 43–50CrossRefGoogle ScholarPubMed
Esser, M., Krishnamurphy, B., and Braciale, V. (1996). Distinct T cell receptor signaling requirements for perforin- or FasL-mediated cytotoxicity. J. Exp. Med., 183, 1697–706CrossRefGoogle ScholarPubMed
Eugster, H., Frei, K., Backman, R., Bluethmann, H., Lassman, H., and Fontana, A. (1999). Severity of symptoms and demyelination in MOG-induced EAE depends on TNFR1. Eur. J. Immunol., 29, 626–323.0.CO;2-A>CrossRefGoogle ScholarPubMed
Feliciani, C., Toto, P., America, P.et al. (2000). In vitro and in vivo expression of interleukin-1-α and tumor necrosis factor-α mRNA in pemphigus vulgaris: interleukin-1a and tumor necrosis factor-a are involved in acantholysis. J. Invest. Dermatol., 114, 71–7CrossRefGoogle Scholar
Franco, A., Guidotti, L., Hobbs, M., Pasquetto, V., and Chisari, F. (1997). Pathogenetic effector function of CD4+ T-helper 1 cells in hepatitis B virus transgenic mice. J. Immunol., 159, 2001–10Google ScholarPubMed
Froelich, C., Orth, K., Turbov, J.et al. (1996). New paradigm for lymphocyte granule-mediated cytotoxicity. Target cells bind and internalize granzyme B, but an endosomolytic agent is necessary for cytosolic delivery and apoptosis. J. Biol. Chem., 271, 29073–9CrossRefGoogle ScholarPubMed
Fujii, K., Fujii, Y., Hubscher, S., and Tanaka, Y. (2001). CD44 is the physiological trigger of Fas up-regulation on rheumatoid synovial cells. J. Immunol., 167, 1198–203CrossRefGoogle ScholarPubMed
Galon, J., Aksentijevich, I., McDermott, M., O'Shea, J., and Kastner, D. (2000). TNFRSF1A mutations and autoinflammatory syndromes. Curr. Opin. Immunol., 12, 479–86CrossRefGoogle ScholarPubMed
Garban, H. and Bonavida, B. (2001). Nitric oxide inhibits the transcription repressor yin-yang 1 binding activity at the silencer region of the Fas promoter: a pivotal role for nitric oxide in the up-regulation of Fas gene expression in human tumor cells. J. Immunol., 167, 75–81CrossRefGoogle ScholarPubMed
Giordano, C., Stassi, G., Maria, R.et al. (1997). Potential involvement of Fas and its ligand in the pathogenesis of Hashimoto's thyroiditis. Science, 275, 960–3CrossRefGoogle ScholarPubMed
Goverman, J. (1999). Tolerance and autoimmunity in TCR transgenic mice specific for myelin basic protein. Immunol. Rev., 169, 147–59CrossRefGoogle ScholarPubMed
Graser, R., DiLorenzo, T., Wang, F.et al. (1999). Identification of a CD8 T cell that can independently mediate autoimmune diabetes development in the complete absence of CD 4 T cell helper functions. J. Immunol., 164, 3913–18CrossRefGoogle Scholar
Green, E. A. and Flavell, R. A. (2000). The temporal importance of TNFalpha expression in the development of diabetes. Immunity, 12, 459–69CrossRefGoogle ScholarPubMed
Grell, M., Zimmermann, G., Gottfried, E.et al. (1999). Induction of cell death by tumor necrosis factor (TNF) receptor 2, CD40 and CD30: a role for TNF-R1 activation by endogenous membrane- anchored TNF. EMBO. J., 18, 3034–43CrossRefGoogle ScholarPubMed
Gross, J. A., Johnston, J., Mudri, S.et al. (2000). TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune diseases. Nature, 404, 995–9CrossRefGoogle Scholar
Gura, T. (1997). How TRAIL kills cancer cells, but not normal cells. Science, 277, 768CrossRefGoogle Scholar
Haas, C., Ryffel, B., and Hir, M. L. (1998). INF-gamma receptor depletion prevents autoantibody production and glomerulonephritis in lupus-prone (NZB x NZW)F1 mice. J. Immunol., 160, 3173–8Google Scholar
Hanninen, A., Jalkanen, S., Salmi, M., Toikkanen, S., Nikolakaros, G., and Simell, O. (1992). Macrophages, T cell receptor usage, and endothelial cell activation in the pancreas at the onset of insulin-dependent diabetes mellitus. J. Clin. Invest., 90, 1901CrossRefGoogle ScholarPubMed
Hegde, R., Srinivasula, S. M., Zhang, Z.et al. (2002). Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J. Biol. Chem., 277, 432–8CrossRefGoogle ScholarPubMed
Heibein, J. A., Goping, I. S., Barry, M.et al. (2000). Granzyme B-mediated cytochrome c release is regulated by the Bcl-2 family members bid and Bax. J. Exp. Med., 192, 1391–402CrossRefGoogle ScholarPubMed
Heitmeier, M., Scarim, A., and Corbett, J. (1997). IFN-γ increases the sensitivity of islets of Langerhans for inducible nitric oxide synthase expression induced by interleukin 1. J. Biol. Chem., 272, 13697CrossRefGoogle ScholarPubMed
Heitmeier, M. R., Arnush, M., Scarim, A. L., and Corbett, J. A. (2001). Pancreatic beta-cell damage mediated by beta-cell production of interleukin-1. A novel mechanism for virus-induced diabetes. J. Biol. Chem., 276, 11151–8CrossRefGoogle ScholarPubMed
Helgason, C. D., Prendergast, J. A., Berke, G., and Bleackley, R. C. (1992). Peritoneal exudate lymphocyte and mixed lymphocyte culture hybridomas are cytolytic in the absence of cytotoxic cell proteinases and perforin. Eur. J. Immunol., 22, 3187–90CrossRefGoogle ScholarPubMed
Henkart, P. A. (1985). Mechanism of lymphocyte-mediated cytotoxicity. Annu. Rev. Immunol., 3, 31–58CrossRefGoogle ScholarPubMed
Heusel, J., Wesselschmidt, R., Shresta, S., Russell, J., and Ley, T. (1994). Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell, 76, 977–87CrossRefGoogle ScholarPubMed
Hildeman, D. A., Zhu, Y., Mitchell, T. C., Kappler, J., and Marrack, P. (2002). Molecular mechanisms of activated T cell death in vivo. Curr. Opin. Immunol., 14, 354–9CrossRefGoogle Scholar
Hilliard, B., Wilmen, A., Seidel, C., Liu, T. S., Goke, R., and Chen, Y. (2001). Roles of TNF-related apoptosis-inducing ligand in experimental autoimmune encephalomyelitis. J. Immunol., 166, 1314–19CrossRefGoogle ScholarPubMed
Hiromatsu, Y., Tomoaki, H., Yagita, H.et al. (1999). Functional fas ligand expression in thyrocytes from patients with Graves' disease. J. Clin. Endocrinol. Metab., 84, 2896–902Google ScholarPubMed
Hoorens, A., Stange, G., Pavlovic, D., and Pipeleers, D. (2001). Distinction between interleukin-1-induced necrosis and apoptosis of islet cells. Diabetes, 50, 551–557CrossRefGoogle ScholarPubMed
Hotta, M., Tashiro, F., Ikegami, H.et al. (1998). Pancreatic B cell-specific expression of thioredoxin, an antioxidative and antiapoptotic protein, prevents autoimmune and streptozotocin-induced diabetes. J. Exp. Med., 188, 1445–51CrossRefGoogle Scholar
Huseby, E. S., Ohlen, C., and Goverman, J. (1999). Cutting edge: myelin basic protein-specific cytotoxic T cell tolerance is maintained in vivo by a single dominant epitope in H-2k mice. J. Immunol., 163, 1115–18Google ScholarPubMed
Iijima, H., Takahashi, I., Kishi, D.et al. (1999). Alteration of interleukin 4 production results in the inhibition of T helper type 2 cell-dominated inflammatory bowel disease in T cell receptor alpha chain-deficient mice. J. Exp. Med., 190, 607–15CrossRefGoogle Scholar
Irmler, M., Thorme, M., Hahne, M.et al. (1997). Inhibition of death receptor signals by cellular FLIP. Nature, 388, 190–5CrossRefGoogle ScholarPubMed
Itoh, N., Hanafusa, T., Miyazaki, A.et al. (1993). Mononuclear cell infiltration and its relation to the expression of major histocompatibility complex antigens and adhesion molecules in pancreas biopsy specimens from newly diagnosed insulin-dependent diabetes mellitus patients. J. Clin. Invest., 153, 1360–77Google Scholar
Itoh, N., Imagawa, A., Hanafusa, T.et al. (1997). Requirement of Fas for the development of autoimmune diabetes in nonobese diabetic mice. J. Exp. Med., 186, 613–18CrossRefGoogle ScholarPubMed
Ji, H., Korganow, A. S., Mangialaio, S.et al. (1999). Different modes of pathogenesis in T-cell-dependent autoimmunity: clues from two TCR transgenic systems. Immunol. Rev., 169, 139–46CrossRefGoogle ScholarPubMed
Jiang, Y., Woronicz, J., Liu, W., and Goeddel, D. (1999). Prevention of constitutive TNF receptor I signaling by silencer of death domain. Science, 283, 543–6CrossRefGoogle Scholar
Kagi, D., Ledermann, B., Burki, K.et al. (1994). Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature, 369, 31–7CrossRefGoogle Scholar
Kagi, D., Odermatt, B., Ohashi, P., Zinkernagel, R., and Hengartner, H. (1996). Development of insulitis without diabetes in transgenic mice lacking perforin-dependent cytotoxicity. J. Exp. Med., 183, 2143–52CrossRefGoogle ScholarPubMed
Kagi, D., Odermatt, B., Seiler, P., Zinkernagel, R., Mak, T., and Hengartner, H. (1997). Reduced incidence and delayed onset of diabetes in perforin-deficient nonobese diabetic mice. J. Exp. Med., 186, 989–97CrossRefGoogle ScholarPubMed
Kanagawa, O., Shimizu, J., and Vaupel, B. A. (2000). Thymic and postthymic regulation of diabetogenic CD8 T cell development in TCR transgenic nonobese diabetic (NOD) mice. J. Immunol., 164, 5466–73CrossRefGoogle ScholarPubMed
Kaplan, M. J., Ray, D., Mo, R. R., Yung, R. L., and Richardson, B. C. (2000). TRAIL (Apo2 ligand) and TWEAK (Apo3 ligand) mediate CD4+ T cell killing of antigen-presenting macrophages. J. Immunol., 164, 2897–904CrossRefGoogle ScholarPubMed
Kaspar, A. A., Okada, S., Kumar, J.et al. (2001). A distinct pathway of cell-mediated apoptosis initiated by granulysin. J. Immunol., 167, 350–6CrossRefGoogle ScholarPubMed
Kassiotis, G. and Kollias, G. (2001). Uncoupling the proinflammatory from the immunosuppressive properties of tumor necrosis factor (TNF) at the p55 TNF receptor level: implications for pathogenesis and therapy of autoimmune demyelination. J. Exp. Med., 193, 427–34CrossRefGoogle ScholarPubMed
Kataoka, T., Budd, R. C., Holler, N.et al. (2000). The caspase-8 inhibitor FLIP promotes activation of NFΚB and erk signaling pathways. Curr. Biol., 10, 640–8CrossRefGoogle Scholar
Katz, J., Benoist, C., and Mathis, D. (1993). Major histocompatibility complex class I molecules are required for the generation of insulitis in non-obese diabetic mice. Eur. J. Immunol., 23, 3358–60CrossRefGoogle Scholar
Kawahara, A., ohsawa, Y, Matsumura, H., Uchiyama, Y., and Nagata, S. (1998). Caspase-independent cell killing by Fas-associated protein with death domain. J. Cell Biol., 143, 1353–60CrossRefGoogle ScholarPubMed
Kayagaki, N., Yamaguchi, N., Nakayama, M.et al. (1999). Involvement of TNF-related apoptosis-inducing ligand in human CD4+ T cell-mediated cytotoxicity. J. Immunol., 162, 2639–47Google ScholarPubMed
Khare, S., Sarosi, I., Xia, X.et al. (2000). Severe B cell hyperplasia and autoimmune disease in TALL-1 transgenic mice. Proc. Natl. Acad. Sci. USA, 97, 3370–5CrossRefGoogle ScholarPubMed
Kim, S., Kim, K. A., Hwang, D. Y.et al. (2000). Inhibition of autoimmune diabetes by Fas ligand: the paradox is solved. J. Immunol., 164, 2931–6CrossRefGoogle ScholarPubMed
Kim, T., Zhao, Y., Barber, M., Kuharsky, D., and Yin, X. (2000). Bid-induced cytochrome c release is mediated by a pathway independent of mitochondrial permeability transition pore and Bax. J. Biol. Chem., 275, 39474–81CrossRefGoogle ScholarPubMed
Koh, D., Fung-Leung, W. P., Ho, A., Gray, D., Acha-Orbea, H., and Mak, T. W. (1992). Less mortality but more relapses in experimental allergic encephalomyelitis in CD8–/– mice. Science, 256, 1210–13CrossRefGoogle ScholarPubMed
Kong, Y., Feige, U., Sarosi, I.et al. (1999). Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature, 402, 304–9CrossRefGoogle ScholarPubMed
Kontoyiannis, D., Pasparakis, M., Pizzaro, T., Cominelli, F., and Kollias, G. (1999). Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity, 10, 387–98CrossRefGoogle ScholarPubMed
Kovalovich, K., Li, W., DeAngelis, R., Greenbaum, L., Ciliberto, G., and Taub, R. (2001). Interleukin-6 protects against Fas-mediated death by establishing a critical level of anti-apoptotic hepatic proteins FLIP, Bcl-2 and Bcl-xL. J. Biol. Chem., 276, 26605–13CrossRefGoogle ScholarPubMed
Krammer, P. H. (2000). CD95's deadly mission in the immune system. Nature, 407, 789–95CrossRefGoogle ScholarPubMed
Krensky, A. M. (2000). Granulysin: a novel antimicrobial peptide of cytolytic T lymphocytes and natural killer cells. Biochem. Pharmacol., 59, 317–20CrossRefGoogle ScholarPubMed
Kreuwel, H. T., Morgan, D. J., Krahl, T., Ko, A., Sarvetnick, N., and Sherman, L. A. (1999). Comparing the relative role of perforin/granzyme versus Fas/Fas ligand cytotoxic pathways in CD8+ T cell-mediated insulin-dependent diabetes mellitus. J. Immunol., 163, 4335–41Google Scholar
Kurasawa, K., Hirose, K., Sano, H.et al. (2000). Increased interleukin 17 production in patients with systemic sclerosis. Arthritis. Rheum., 43, 2455–603.0.CO;2-K>CrossRefGoogle ScholarPubMed
Lee, S., Zhou, T., Choi, C., Wang, Z., and Benveniste, E. (2000). Differential regulation and function of Fas expression on glial cells. J. Immunol., 164, 1277–85CrossRefGoogle ScholarPubMed
Lehmann, C., Zeis, M., Schmitz, N., and Uharek, L. (2000). Impaired binding of perforin on the surface of tumor cells is a cause of target cell resistance against cytotoxic effector cells. Blood, 96, 594–600Google ScholarPubMed
Li, H., Zhu, H., Xu, C., and Yuan, J. (1998). Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell, 94, 491–501CrossRefGoogle Scholar
Li, M. and Berg, A. (2000). Induction of necrotic-like cell death by tumor necrosis factor alpha and caspase inhibitors: novel mechanism for killing virus-infected cells. J. Virol., 74, 7470–7CrossRefGoogle ScholarPubMed
Liu, D., Pavlovic, D., Chen, M. C., Flodstrom, M., Sandler, S., and Eizirik, D. L. (2000). Cytokines induce apoptosis in beta-cells isolated from mice lacking the inducible isoform of nitric oxide synthase (iNOS–/–). Diabetes, 49, 1116–22CrossRefGoogle Scholar
Liu, J., Marino, M., Wong, G.et al. (1998). TNF is a potent anti-inflammatory cytokine in autoimmune-mediated demyelination. Nat. Med., 4, 78–82CrossRefGoogle ScholarPubMed
Lovell, D., Giannini, E., Reiff, A.et al. (2000). Etanercept in children with polyarticular juvenile rheumatoid arthritis. N. Engl. J. Med., 342, 763–9CrossRefGoogle ScholarPubMed
Lowin, B., Beermann, F., Schmidt, A., and Tschopp, J. (1994). A null mutation in the perforin gene impairs cytolytic T lymphocyte- and natural killer cell-mediated cytotoxicity. Proc. Natl. Acad. Sci. USA, 91, 11571–5CrossRefGoogle ScholarPubMed
Lubberts, E., Joosten, L., Oppers, B.et al. (2001). IL-1-independent role of IL-17 in synovial inflammation and joint destruction during collagen-induced arthritis. J. Immunol., 167, 1004–13CrossRefGoogle ScholarPubMed
Luo, X., Budihardjo, I., Zou, H., Slaughter, C., and Wang, X. (1998). Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell, 94, 481–90CrossRefGoogle ScholarPubMed
Mackay, F., Woodcock, S., Lawton, P.et al. (1999). Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J. Exp. Med., 190, 1697–710CrossRefGoogle ScholarPubMed
Mathews, C. E., Graser, R. T., Savinov, A., Serreze, D. V., and Leiter, E. H. (2001). Unusual resistance of ALR/Lt mouse beta cells to autoimmune destruction: role for beta cell-expressed resistance determinants. Proc. Natl. Acad. Sci. USA, 98, 235–40CrossRefGoogle ScholarPubMed
Medana, I., Gallimore, A., Oxenius, A., Martinic, M., Wekerle, H., and Neumann, H. (2000). MHC class I-restricting killing of neurons by virus-specific CD8+ T lymphocytes is effected through the Fas/FasL, but not the perforin pathway. Eur. J. Immunol., 30, 3623–333.0.CO;2-F>CrossRefGoogle Scholar
Medana, I., Li, Z., Flugel, A., Tschopp, J., Wekerle, H., and Neumann, H. (2001). Fas ligand (CD95L) protects neurons against perforin-mediated T-lymphocyte cytotoxicity. J. Immunol., 167, 674–81CrossRefGoogle ScholarPubMed
Mendel, I., Katz, A., Kozak, N.et al. (1998). Interleukin-6 functions in autoimmune encephalomyelitis: a study in gene-targeted mice. Eur. J. Immunol., 28, 1727–373.0.CO;2-#>CrossRefGoogle ScholarPubMed
Mitsiades, N., Poulaki, V., Mastorakkpsi, G., Tseleni-Balafouta, S., Kotoula, V., and Koutras, A. (1999). Fas ligand expression in thyroid carcinomas: a potential mechanism for immune evasion. J. Clin. Endocrinol. Metab., 84, 2924–32CrossRefGoogle ScholarPubMed
Morgan, D., Liblan, R., Scott, B.et al. (1996). CD8+ T-cell-mediated spontaneous diabetes in neonatal mice. J. Immunol., 157, 978–83Google ScholarPubMed
Moriwaki, M., Itoh, N., Miyagawa, J.et al. (1999). Fas and Fas ligand expression in inflamed islets in pancreas sections of patients with recent-onset type I diabetes mellitus. Diabetologia, 42, 1332–40CrossRefGoogle ScholarPubMed
Motyka, B., Korbutt, G., Pinkoski, M. J.et al. (2000). Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis. Cell, 103, 491–500CrossRefGoogle ScholarPubMed
Muzio, M., Chinnaiyan, A. M., Kischkel, F. C.et al. (1996). FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell, 85, 817–27CrossRefGoogle ScholarPubMed
Nagata, M., Santamaria, P., Kawamura, T., Utsugi, T., and Yoon, J.-W. (1994). Evidence for the role of CD8+ cytotoxic T cells in the destruction of pancreatic beta cells in NOD mice. J. Immunol., 152, 2042–50Google Scholar
Nakamoto, Y., Guidotti, L., Pasquetto, V., Schreiber, R., and Chisari, F. (1997). Differential target cell sensitivity to CTL-activated death pathways in hepatitis B virus transgenic mice. J. Immunol., 158, 5692Google ScholarPubMed
Ohashi, P., Oehen, S., Buerki, K.et al. (1991). Ablation of tolerance and induction of diabetes by virus infection in viral antigen transgenic mice. Cell, 65, 305–17CrossRefGoogle ScholarPubMed
Ohta, A., Sekimoto, M., Sato, M.et al. (2000). Indispensable role for TNF-alpha and IFN-gamma at the effector phase of liver injury mediated by Th1 cells specific to hepatitis B virus surface antigen. J. Immunol., 165, 956–61CrossRefGoogle ScholarPubMed
Okuda, Y., Sakoda, S., and Bernard, C. (1998). IL-6-deficient mice are resistant to the induction of experimental encephalomyelitis provoked by myelin oligodendrocyte glycoprotein. Int. Immunol., 10, 703–8CrossRefGoogle ScholarPubMed
Ostergaard, H. L., Kane, K. P., Mescher, M. F., and Clark, W. R. (1987). Cytotoxic T lymphocyte mediated lysis without release of serine esterase. Nature, 330, 71–2CrossRefGoogle ScholarPubMed
Owens, T., Wekerle, H., and Antel, J. (2001). Genetic models for CNS inflammation. Nat. Med., 7, 161–6CrossRefGoogle ScholarPubMed
Pakala, S., Chivetta, M., Kelly, C., and Katz, J. (1999). In autoimmune diabetes the transition from benign to pernicious insulitis requires an islet cell response to tumor necrosis factor alpha. J. Exp. Med., 189, 1053–62CrossRefGoogle ScholarPubMed
Peng, S., Moslehi, J., and Craft, J. (1997). Roles of interferon-gamma and interleukin-4 in murine lupus. J. Clin. Invest., 99, 1936–46CrossRefGoogle ScholarPubMed
Piguet, P., Vesin, C., Guo, J., Donati, Y., and Barazzone, C. (1998). TNF-induced enterocyte apoptosis in mice is mediated by the TNF receptor 1 and does not require p53. Eur. J. Immunol., 28, 3499–5053.0.CO;2-Q>CrossRefGoogle Scholar
Pimentel-Muinos, F. and Seed, B. (1999). Regulated commitment of TNF receptor signaling: a molecular switch for death or activation. Immunity, 11, 783–93CrossRefGoogle ScholarPubMed
Pinkoski, M. J., Hobman, M., Heibein, J. A.et al. (1998). Entry and trafficking of granzyme B in target cells during granzyme B-perforin-mediated apoptosis. Blood, 92, 1044–54Google ScholarPubMed
Pinkoski, M. J., Waterhouse, N. J., Heibein, J. A.et al. (2001). Granzyme B-mediated apoptosis proceeds predominantly through a Bcl-2-inhibitable mitochondrial pathway. J. Biol. Chem., 276, 12060–7CrossRefGoogle ScholarPubMed
Powell, M., Mitchell, D., Lederman, J.et al. (1990). Lymphotoxin and tumor necrosis factor-alpha production by myelin basic protein-specific T cell clones correlates with encephalitogenicity. Int. Immunol., 2, 539–44CrossRefGoogle ScholarPubMed
Renno, T., Krakowski, M., Piccirillo, C., Lin, J.-Y., and Owens, T. (1995). TNF-α expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis. J. Immunol., 154, 944–53Google ScholarPubMed
Rescigno, M., Piguet, V., Valzasina, B.et al. (2000). Fas engagement induces the maturation of dendritic cells (DCs), the release of interleukin-1beta, and the production of interferon gamma in the absence of IL-12 during DC-T cell cognate interaction. A new role for Fas ligand in inflammatory responses. J. Exp. Med., 192, 1661–8CrossRefGoogle Scholar
Riminton, D., Korner, H., Strickland, D., Lemckert, F., Pollard, J., and Sedgwick, J. (1998). Challenging cytokine redundancy: inflammatory cell movement and clinical course of experimental autoimmune encephalomyelitis are normal in lymphotoxin-deficient mice, but not tumor necrosis factor-deficient mice. J. Exp. Med., 187, 1517–28CrossRefGoogle Scholar
Rouvier, E., Luciani, M. F., and Golstein, P. (1993). Fas involvement in Ca(2+)-independent T cell-mediated cytotoxicity. J. Exp. Med., 177, 195–200CrossRefGoogle ScholarPubMed
Saas, P., Boucraut, J., Quiquerez, A.et al. (1999). CD95 9fas/Apo-1 as a receptor governing astrocyte apoptotic or inflammatory responses: a key role in brain inflammation?J. Immunol., 162, 2326–33Google ScholarPubMed
Sabelko, K., Kelly, K., Nahm, M., Cross, A., and Russell, J. (1997). Fas and Fas ligand enhance the pathogenesis of experimental allergic encephalomyelitis, but are not essential for immune privilege in the central nervous system. J. Immunol., 159, 3096–9Google Scholar
Sabelko-Downes, K., Cross, A., and Russell, J. (1999). Dual role for Fas ligand in the initiation of and recovery from experimental allergic encephalomyelitis. J. Exp. Med., 189, 1195CrossRefGoogle ScholarPubMed
Sakata, K., Sakata, A., Vela-Roch, N.et al. (1998). Fas (CD95)-transduced signal preferentially stimulates lupus peripheral T lymphocytes. Eur. J. Immunol., 28, 2648–603.0.CO;2-M>CrossRefGoogle ScholarPubMed
Samoilova, E., Horton, J., Hilliard, B.et al. (1998). IL-6-deficient mice are resistant to experimental autoimmune encephalomyelitis: roles of OL-6 in the activation and differentiation of autoreactive T-cells. J. Immunol., 161, 6480–6Google Scholar
Santamaria, P., Lewis, C., Sutherland, D., and Barbosa, J. (1992a). CD8+ T cells from isletitis of graft-recurrent type I diabetes are oligoclonal and show restricted TCR usage. Diabetes, 41 (Suppl. 1), 97AGoogle Scholar
Santamaria, P., Nakhleh, R. E., Sutherland, D. E. R., and Barbosa, J. J. (1992b). Isolation and characterization of T lymphocytes infiltrating a human pancreas allograft affected by isletitis and recurrent diabetes. Diabetes, 41, 53–61CrossRefGoogle Scholar
Santamaria, P., Utsugi, T., Park, B., Averill, N., Kawazu, S., and Yoon, J. (1995). Beta cell cytotoxic CD8+ T cells from non-obese diabetic mice use highly homologous T cell receptor alpha chain CDR3 sequences. J. Immunol., 154, 2494–503Google ScholarPubMed
Satoh, M., Weintraub, J. P., Yoshida, H.et al. (2000). Fas and Fas ligand mutations inhibit autoantibody production in pristane-induced lupus. J. Immunol., 165, 1036–43CrossRefGoogle ScholarPubMed
Scaffidi, C., Fulda, S., Srinivasan, A.et al. (1998). Two CD95 (APO-1/Fas) signaling pathways. EMBO. J., 17, 1675–87CrossRefGoogle ScholarPubMed
Schmidt, D., Amrani, A., Verdaguer, J., Bou, S., and Santamaria, P. (1999). Autoantigen-independent deletion of diabetogenic CD4+ thymocytes by protective MHC class II molecules. J. Immunol., 162, 4627–36Google ScholarPubMed
Schmidt, D., Verdaguer, J., Averill, N., and Santamaria, P. (1997). A mechanism for the major histocompatibility complex-linked resistance to autoimmunity. J. Exp. Med., 186, 1059–75CrossRefGoogle ScholarPubMed
Schneider, P., Mackay, F., Steiner, V.et al. (1999). BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J. Exp. Med., 189, 1747–56CrossRefGoogle ScholarPubMed
Seewaldt, S., Thomas, H. E., Ejrnaes, M.et al. (2000). Virus-induced autoimmune diabetes: most beta-cells die through inflammatory cytokines and not perforin from autoreactive (anti-viral) cytotoxic T-lymphocytes. Diabetes, 49, 1801–9CrossRefGoogle Scholar
Segal, R., Dayan, M., Zinger, H., and Mozes, E. (2001). Suppression of experimental systemic lupus erythematosus (SLE) in mice via TNF inhibition by an anti-TNFα monoclonal antibody and by pentoxiphylline. Lupus, 10, 23–31CrossRefGoogle ScholarPubMed
Serreze, D., Leiter, E., Christianson, G., Greiner, D., and Roopenian, D. (1994). Major histocompatibility complex class I-deficient NOD.β1mnull mice are diabetes and insulitis resistant. Diabetes, 43, 505–8CrossRefGoogle ScholarPubMed
Serreze, D. V., Post, C. M., Chapman, H. D., Johnson, E. A., Lu, B., and Rothman, P. B. (2000). Interferon-gamma receptor signaling is dispensable in the development of autoimmune type 1 diabetes in NOD mice. Diabetes, 49, 2007–11CrossRefGoogle ScholarPubMed
Sharif-Askari, E., Alam, A., Rheaume, E.et al. (2001). Direct cleavage of the human DNA fragmentation factor-45 by granzyme B induces caspase-activated DNase release and DNA fragmentation. EMBO. J., 20, 3101–13CrossRefGoogle ScholarPubMed
Shi, L., Kraut, R. P., Aebersold, R., and Greenberg, A. H. (1992). A natural killer cell granule protein that induces DNA fragmentation and apoptosis. J. Exp. Med., 175, 553–66CrossRefGoogle ScholarPubMed
Shi, L., Mai, S., Israels, S., Browne, K., Trapani, J., and Greenberg, A. (1997). Granzyme B (GraB) autonomously crosses the cell membrane and perforin initiates apoptosis and GraB nuclear localization. J. Exp. Med., 185, 855–66CrossRefGoogle ScholarPubMed
Shresta, S., Graubert, T. A., Thomas, D. A., Raptis, S. Z., and Ley, T. J. (1999). Granzyme A initiates an alternative pathway for granule-mediated apoptosis. Immunity, 10, 595–605CrossRefGoogle ScholarPubMed
Sibley, R. K., Sutherland, D. E. R., Goetz, F., and Michael, A. F. (1985). Recurrent diabetes mellitus in the pancreas iso- and allograft. Lab. Invest., 53, 132–44Google ScholarPubMed
Siegel, R., Chang, F., Chun, H., and Lenardo, M. (2000a). The multifaceted role of fas signaling in immune cell homeostasis and autoimmunity. Nat. Immunol., 1, 469–74CrossRefGoogle Scholar
Siegel, R. M., Chan, F. K., Chun, H. J., and Lenardo, M. J. (2000b). The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nat. Immunol., 1, 469–74CrossRefGoogle Scholar
Simon, M., Hausmann, M., Tran, T.et al. (1997). In vitro-and ex-derived cytolytic leukocytes from granzyme A × B double knockout mice are defective in granule-mediated apoptosis but not lysis of target cells. J. Exp. Med., 186, 1781–6CrossRefGoogle Scholar
Somoza, N., Vargas, F., Roura-Mir, C.et al. (1994). Pancreas in recent onset insulin-dependent diabetes mellitus. J. Immunol., 153, 1360–77Google ScholarPubMed
Song, K., Chen, Y., Goke, R.et al. (2000). Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an inhibitor of autoimmune inflammation and cell cycle progression. J. Exp. Med., 191, 1095–104CrossRefGoogle ScholarPubMed
Stassi, G., DeMaria, R., Trucco, G.et al. (1997). Nitric oxide primes pancreatic beta cells for Fas-mediated destruction in insulin-dependent diabetes mellitus. J. Exp. Med., 186, 1193CrossRefGoogle ScholarPubMed
Su, X., Hu, Q., Kristan, J. M.et al. (2000). Significant role for Fas in the pathogenesis of autoimmune diabetes. J. Immunol., 164, 2523–32CrossRefGoogle ScholarPubMed
Sun, D., Whitaker, J., Huang, Z.et al. (2001). Myelin antigen-specific CD8+ T-cells are encephalitogenic and produce severe disease in C57BL/6 mice. J. Immunol., 166, 7579–87CrossRefGoogle ScholarPubMed
Sutton, V. R., Davis, J. E., Cancilla, M.et al. (2000). Initiation of apoptosis by granzyme B requires direct cleavage of bid, but not direct granzyme B-mediated caspase activation. J. Exp. Med., 192, 1403–14CrossRefGoogle Scholar
Suvannavejh, G. C., Dal Canto, M. C., Matis, L. A., and Miller, S. D. (2000a). Fas-mediated apoptosis in clinical remissions of relapsing experimental autoimmune encephalomyelitis. J. Clin. Invest., 105, 223–31CrossRefGoogle Scholar
Suvannavejh, G. C., Lee, H. O., Padilla, J., Dal Canto, M. C., Barrett, T. A., and Miller, S. D. (2000b). Divergent roles for p55 and p75 tumor necrosis factor receptors in the pathogenesis of MOG(35–55)-induced experimental autoimmune encephalomyelitis. Cell Immunol., 205, 24–33CrossRefGoogle Scholar
Suzuki, H., Kundig, T., Furlonger, C.et al. (1995). Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science, 268, 1472–6CrossRefGoogle ScholarPubMed
Taylor, G., Carballo, E., Lee, D.et al. (1996). A pathogenetic role for TNFα in the syndrome of cachexia, arthritis and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity, 4, 445–54CrossRefGoogle ScholarPubMed
Teng, Y., Nguyen, H., Gao, X.et al. (2000). Functional human T cell immunity and osteoprotegerin ligand control alveolar bone destruction in periodontal infection. J. Clin. Invest., 106, R59–7CrossRefGoogle Scholar
Thomas, D. A., Scorrano, L., Putcha, G. V., Korsmeyer, S. J., and Ley, T. J. (2001). Granzyme B can cause mitochondrial depolarization and cell death in the absence of BID, BAX, and BAK. Proc. Natl. Acad. Sci. USA, 98, 14985–90CrossRefGoogle ScholarPubMed
Thomas, H., Darwiche, R., Corbett, J., and Kay, T. (2002). Interleukin-1 plus γ-interferon-induced pancreatic beta cell dysfunction is mediated by beta cell nitric oxide production. Diabetes, 51, 311–16CrossRefGoogle ScholarPubMed
Thomas, H. E., Darwiche, R., Corbett, J. A., and Kay, T. W. (1999). Evidence that beta cell death in the nonobese diabetic mouse is Fas independent. J. Immunol., 163, 1562–9Google ScholarPubMed
Tisch, R. and McDevitt, H. (1996). Insulin-dependent diabetes mellitus. Cell, 85, 291–7CrossRefGoogle ScholarPubMed
Tran, S., Holmstrom, T., Ahonen, M., Kahari, V., and Eriksson, J. (2001). MAPK/ERK overrides the apoptotic signaling from Fas, TNF and TRAIL receptors. J. Biol. Chem., 276, 16484–90CrossRefGoogle ScholarPubMed
Trautmann, A., Akdis, M., Kleemann, D.et al. (2000). T cell-mediated Fas-induced keratinocyte apoptosis plays a key pathogenetic role in eczematous dermatitis. J. Clin. Invest., 106, 25–35CrossRefGoogle Scholar
Tsuchida, T. (1994). Autoreactive CD8+ T-cell responses to human myelin protein-derived peptides. Proc. Natl. Acad. Sci. USA, 91, 10859–63CrossRefGoogle ScholarPubMed
Vercammen, D., Brouckaert, G., Denecker, G.et al. (1998). Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. J. Exp. Med., 188, 919–30CrossRefGoogle ScholarPubMed
Verdaguer, J., Schmidt, D., Amrani, A., Anderson, B., Averill, N., and Santamaria, P. (1997). Spontaneous autoimmune diabetes in monoclonal T cell nonobese diabetic mice. J. Exp. Med., 186, 1663–76CrossRefGoogle ScholarPubMed
Verdaguer, J., Yoon, J.-W., Anderson, B.et al. (1996). Acceleration of spontaneous diabetes in TCRβ-transgenic nonobese diabetic mice by beta cell-cytotoxic CD8+ T cells expressing identical endogenous TCRα chains. J. Immunol., 157, 4726–35Google Scholar
Verhagen, A. M., Ekert, P. G., Pakusch, M.et al. (2000). Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell, 102, 43–53CrossRefGoogle ScholarPubMed
Verma, S., Hutchings, P., Guo, J., McLachlan, S., Rapoport, B., and Cooke, A. (2000). Role of MHC class I expression and CD8(+) T cells in the evolution of iodine-induced thyroiditis in NOD-H2(h4) and NOD mice. Eur. J. Immunol., 30, 1191–2023.0.CO;2-L>CrossRefGoogle ScholarPubMed
Villunger, A., Huang, D., Holler, N., Tschopp, J., and Strasser, A. (2000). Fas ligand-induced c-Jun kinase activation in lymphoid cells requires extensive receptor aggregation but is independent of DAXX, and Fas-mediated cell death does not involve DAXX, RIP or RAIDD. J. Immunol., 165, 1337–43CrossRefGoogle ScholarPubMed
Wahlsten, J. L., Gitchell, H. L., Chan, C. C., Wiggert, B., and Caspi, R. R. (2000). Fas and Fas ligand expressed on cells of the immune system, not on the target tissue, control induction of experimental autoimmune uveitis. J. Immunol., 165, 5480–86CrossRefGoogle Scholar
Waldner, H., Sobel, R., Howard, E., and Kuchroo, V. (1997). Fas- and FasL-deficient mice are resistant to induction of autoimmune encephalomyelitis. J. Immunol., 159, 3100–3Google ScholarPubMed
Walter, U., Frantzke, A., Sarukhan, A.et al. (2000). Monitoring gene expression of TNFR family members by beta-cells during development of autoimmune diabetes. Eur. J. Immunol., 30, 1224–323.0.CO;2-B>CrossRefGoogle ScholarPubMed
Wang, B., Gonzalez, A., Benoist, C., and Mathis, D. (1996). The role of CD8+ T-cells in initiation of insulin-dependent diabetes mellitus. Eur. J. Immunol., 26, 1762–9CrossRefGoogle ScholarPubMed
Wang, H. B., Li, H., Shi, F. D., Chambers, B. J., Link, H., and Ljunggren, H. G. (2000). Tumor necrosis factor receptor-1 is critically involved in the development of experimental autoimmune myasthenia gravis. Int. Immunol., 12, 1381–8CrossRefGoogle ScholarPubMed
Wang, J., Zheng, L., Lobito, A.et al. (1999). Inherited human caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell, 98, 47–58CrossRefGoogle ScholarPubMed
Wicker, L., Leiter, E., Todd, J.et al. (1994). β2-microglobulin-deficient NOD mice do not develop insulitis or diabetes. Diabetes, 43, 500–4CrossRefGoogle ScholarPubMed
Wildbaum, G., Westermann, J., Maor, G., and Karin, N. (2000). A targeted DNA vaccine encoding fas ligand defines its dual role in the regulation of experimental autoimmune encephalomyelitis. J. Clin. Invest., 106, 671–9CrossRefGoogle ScholarPubMed
Wong, F., Karttunen, J., Dumont, C.et al. (1999). Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library. Nat. Med., 9, 1026–31CrossRefGoogle Scholar
Xia, X. Z., Treanor, J., Senaldi, G.et al. (2000). TACI is a TRAF-interacting receptor for TALL-1, a tumor necrosis factor family member involved in B cell regulation. J. Exp. Med., 192, 137–43CrossRefGoogle ScholarPubMed
Yamada, K., Takane-Gyotoku, N., Ichikawa, F., Inada, C., and Nokada, K. (1996). Mouse islet cell lysis mediated by interleukin-1-induced Fas. Diabetologia, 39, 1306–12CrossRefGoogle ScholarPubMed
Zeine, R., Pon, R., Ladiwala, U., Antel, J., Filion, L., and Freedman, M. (1998). Mechanism of gamma delta T cell-induced human oligodendrocyte cytotoxicity: relevance to multiple sclerosis. J. Neuroimmunol., 87, 49–61CrossRefGoogle Scholar
Zhang, B., Yamamura, T., Kondo, T., Fujiwara, M., and Tabira, T. (1997). Regulation of experimental allergic encephalomyelitis by natural killer (NK) cells. J. Exp. Med., 186, 1677–87CrossRefGoogle ScholarPubMed
Zhang, D., Beresford, P. J., Greenberg, A. H., and Lieberman, J. (2001a). Granzymes A and B directly cleave lamins and disrupt the nuclear lamina during granule-mediated cytolysis. Proc. Natl. Acad. Sci. USA, 98, 5746–51CrossRefGoogle Scholar
Zhang, D., Pasternack, M. S., Beresford, P. J., Wagner, L., Greenberg, A. H., and Lieberman, J. (2001b). Induction of rapid histone degradation by the cytotoxic T lymphocyte protease granzyme A. J. Biol. Chem., 276, 3683–90CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×