Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-03T21:31:35.364Z Has data issue: false hasContentIssue false

6 - Hydrogen-containing carbides and nitrides and their solid solutions

Published online by Cambridge University Press:  30 March 2010

V. A. Gubanov
Affiliation:
Southern Ural State University, Russia
A. L. Ivanovsky
Affiliation:
Southern Ural State University, Russia
V. P. Zhukov
Affiliation:
Southern Ural State University, Russia
Get access

Summary

Along with above-considered s,p elements (Be, B, C, N, O, Al, etc.) that can enter as impurities into transition metal carbides and nitrides or form solid solutions with them, one of the most widespread impurities found in refractory compounds is H, which is present in the atmosphere during compound synthesis and enters into the composition of final products. Moreover, transition metal hydrides are sometimes used as starting agents (Pavlov, Zainulin and Alyamovsky, 1976) in the production of carbides or nitrides and their solid solutions.

Thus one faces a problem in studying the influence of hydrogen upon the characteristics (including the electronic ones) of transition metal carbides and nitrides. A rather large group of carbide- and nitride-based hydride phases formed in M−(C,N)−H systems has been obtained. However, until recently, attention has been focussed mainly on the methods of synthesis of H-containing phases, on optimal hydrogenation conditions for refractory compounds, as well as on studies of their physico-chemical properties (thermal expansion coefficient, lattice constants, phase composition, etc.) as a function of the dissolved hydrogen concentration (Pavlov et al, 1976; Samsonov, Antonova and Morozov, 1970; Samonov, Upadkhaya and Neshpor, 1974; Shveikin et al, 1984).

An important problem arising in the description of hydrogenated MX phases is that of the localisation sites of H atoms in the matrix. H-containing carbides and nitrides have been investigated rather extensively by the NMR, X-ray and neutron diffraction methods (see Rundqvist Tellgren and Andersson (1984)). The data obtained show that H atoms occupy crystal lattice positions, which are maximally distant from the p elements and are situated at least 2 Å from one another.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×