Skip to main content Accessibility help
×
  • Cited by 57
Publisher:
Cambridge University Press
Online publication date:
January 2010
Print publication year:
2006
Online ISBN:
9780511618369

Book description

The metaphor of the adaptive landscape - that evolution via the process of natural selection can be visualized as a journey across adaptive hills and valleys, mountains and ravines - permeates both evolutionary biology and the philosophy of science. The focus of this 2006 book is to demonstrate to the reader that the adaptive landscape concept can be put into actual analytical practice through the usage of theoretical morphospaces - geometric spaces of both existent and non-existent biological form - and to demonstrate the power of the adaptive landscape concept in understanding the process of evolution. The adaptive landscape concept further allows us to take a spatial approach to the concepts of natural selection, evolutionary constraint and evolutionary development. For that reason, this book relies heavily on spatial graphics to convey the concepts developed within these pages, and less so on formal mathematics.

Reviews

Review of the hardback:'Theoretical morphology needs to become mainstream and find its purpose … This book has established an extremely solid foundation …'

Source: American Journal of Human Biology

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
Ackerly, S. C. (1989). Kinematics of accretionary shell growth, with examples from brachiopods and molluscs. Paleobiology, 15, 147–164.
Ackerly, S. C. (1992). The structure of ontogenetic variation in the shell ofPecten. Palaeontology, 35, 847–867.
Alberch, P. (1982). Developmental constraints in evolutionary processes. In Evolution and Development, ed. Bonner, J. T., pp. 313–332. Berlin: Springer Verlag.
Alberch, P. (1989). The logic of monsters: evidence for internal constraint in development and evolution. Geobios, mémoire spécial, 12, 21–57.
Alberch, P. (1991). From genes to phenotype: dynamical systems and evolvability. Genetica, 84, 5–11.
Alberch, P. and Gale, E. A. (1985). A developmental analysis of an evolutionary trend: digital reduction in amphibians. Evolution, 39, 8–23.
Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B. (1979). Size and shape in ontogeny and phylogeny. Paleobiology, 5, 296–317.
Antonovics, J. and Tienderen, P. H. (1991). Ontoecogenophyloconstraints? The chaos of constraint terminology. Trends in Ecology and Evolution, 6, 166–168.
Arnold, S. J., Pfrender, M. E., and Jones, A. G. (2001). The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica, 112–113, 9–32.
Bambach, R. K., Knoll, A. H., and Wang, S. C. (2004). Origination, extinction, and mass depletions in marine diversity. Paleobiology, 30, 522–542.
Bateson, W. (1896). Materials for the Study of Variation. Baltimore: Johns Hopkins University Press.
Bayer, U. and McGhee, G. R. Jr. (1984). Iterative evolution of Middle Jurassic ammonite faunas. Lethaia, 17, 1–16.
Bayer, U. and McGhee, G. R. Jr. (1985). Evolution in marginal epicontinental basins: the role of phylogenetic and ecological factors (ammonite replacements in the German Lower and Middle Jurassic). In Sedimentary and Evolutionary Cycles, eds. Bayer, U. and Seilacher, A., pp. 164–220. Berlin: Springer Verlag.
Berger, W. H. (1969). Planktonic foraminifera: basic morphology and ecologic implications. Journal of Paleontology, 43, 1369–1383.
Blomberg, S. P. and Garland, T. (2002). Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. Journal of Evolutionary Biology, 15, 899–910.
Bonner, J. T. (1982). Evolution and Development: Report of the Dahlem Workshop on Evolution and Development, Berlin 1981. Berlin: Springer Verlag.
Bookstein, F. L. (1977). The study of shape transformation after D'Arcy Thompson. Mathematical Biosciences, 43, 177–219.
Bookstein, F. L. (1997). Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge: Cambridge University Press.
Brasier, M. D. (1980). Microfossils. London: George Allen and Unwin.
Cain, A. J. (1977). Variation in the spire index of some coiled gastropod shells, and its evolutionary significance. Philosophical Transactions of the Royal Society of London (B: biological sciences), 277, 377–428.
Callebaut, W. and Rasskin-Gutman, D. (2005). Modularity: Understanding the Development and Evolution of Natural Complex Systems. Cambridge (MA): Vienna Series in Theoretical Biology, Massachusetts Institute of Technology Press.
Cattin, M.-F., Bersier, L.-F., Banašek-Richter, C., Baltensperger, R., and Gabriel, J.-P. (2004). Phylogenetic constraints and adaptation explain food-web structure. Nature, 427, 835–839.
Chamberlain, J. A. Jr. (1976). Flow patterns and drag coefficients of cephalopod shells. Palaeontology, 19, 539–563.
Chamberlain, J. A. Jr. (1981). Hydromechanical design of fossil cephalopods. Systematics Association Special Volume, 18, 289–336.
Checa, A. G., Okamoto, T., and Keupp, H. (2002). Abnormalities as natural experiments: a morphologic model for coiling regulation in planispiral ammonites. Paleobiology, 28, 127–138.
Cheetham, A. H. and Hayek, L. C. (1983). Geometric consequences of branching growth in adeoniform Bryozoa. Paleobiology, 9, 240–260.
Ciampaglio, C. N. (2002). Determining the role that ecological and develop-mental constraints play in controlling disparity: examples from the crinoid and blastozoan fossil record. Evolution and Development, 4, 170–188.
Conway Morris, S. (1998). The Crucible of Creation: The Burgess Shale and the Rise of Animals. Oxford: Oxford University Press.
Conway Morris, S. (2003). Life's Solution: Inevitable Humans in a Lonely Universe. Cambridge: Cambridge University Press.
Cook, T. A. (1914). The Curves of Life. London: Constable and Company.
Cortie, M. B. (1989). Models for mollusc shape. South African Journal of Science, 85, 454–460.
Cubo, J. (2004). Pattern and process in constructional morphology. Evolution and Development, 6, 131–133.
Darwin, C. (1859). On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London: John Murray.
Davoli, F. and Russo, F. (1974). Una metodologia paleontometrica basata sul modello di Raup:verifica sperimentale su rappresentanti follili del gen. Subula Schumacher. Bollettino della Società Paleontologica Italiana, 13, 108–121.
Dawkins, R. (1996). Climbing Mount Improbable. New York: W. W. Norton and Co.
Dennett, D. C. (1996). Darwin's Dangerous Idea. New York: Simon and Schuster.
Dobzhanski, T. (1970). Genetics of the Evolutionary Process. New York: Columbia University Press.
Dommergues, J.-L., Laurin, B., and Meister, C. (1996). Evolution of ammonoid morphospace during the Early Jurassic radiation. Paleobiology, 22, 219–240.
Eble, G. J. (2000). Theoretical morphology: state of the art. Paleobiology, 26, 520–528.
Eble, G. J. (2003). Developmental morphospaces and evolution. In Evolutionary Dynamics:Exploring the Interplay of Selection, Accident, Neutrality, and Function, eds. Crutchfield, J. P. and Schuster, P., pp. 33–63. Oxford: Oxford University Press.
Ellers, O. (1993). A mechanical model of growth in regular sea urchins: predictions of shape and a developmental morphospace. Proceedings of the Royal Society of London, B254, 123–129.
Ellison, A. M. and Niklas, K. J. (1988). Branching patterns of Salicornia europaea (Chenopodiaceae) at different successional stages: a comparison of theoretical and real plants. American Journal of Botany, 75, 501–512.
Ferguson, S. A. (2002). Methodology in evolutionary psychology. Biology and Philosophy, 17, 635–650.
Fisher, R. A. (1941). Average excess and average effect of a gene substitution. Annals of Eugenics, 11, 53–63.
Foley, J. and Dam, A. (1982). Fundamentals of Interactive Computer Graphics. Reading, MA: Addison Wesley.
Fortey, R. A. (1983). Geometric constraints in the construction of graptolite stipes. Paleobiology, 9, 116–125.
Funk, and Wagnall, (1963). Standard College Dictionary. New York: Harcourt, Brace and World, Inc.
Futuyma, D. (1998). Evolutionary Biology. Sunderland (MA): Sinauer Associates, Inc.
Gärdenfors, P. (2000). Conceptual Spaces: the Geometry of Thought. Cambridge, MA: MIT Press.
Gavrilets, S. (1997). Evolution and speciation on holey adaptive landscapes. Trends in Ecology and Evolution, 12, 307–312.
Gavrilets, S. (1999). A dynamical theory of speciation on holey adaptive landscapes. American Naturalist, 154, 1–22.
Gavrilets, S. (2003). Evolution and speciation in a hyperspace: the roles of neutrality, selection, mutation, and random drift. In Evolutionary Dynamics: Exploring the Interplay of Selection, Accident, Neutrality, and Function, eds. Crutchfield, J. P. and Schuster, P., pp. 135–162. Oxford: Oxford University Press.
Gavrilets, S. and Gravner, J. (1997). Percolation on the fitness hypercube and the evolution of reproductive isolation. Journal of Theoretical Biology, 184, 51–64.
Goodwin, B. C. (1963). Temporal Organization in Cells. London: Academic Press.
Gould, S. J. (1976). D'Arcy Thompson and the science of form. In Topics in the Philosophy of Biology, eds. Grene, M. and Mendelsohn, E., pp. 66–97. Dortrecht: D. Reidel.
Gould, S. J. (1989). Wonderful Life. New York: W. W. Norton.
Gould, S. J. (1991). The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: why we must strive to quantify morphospace. Paleobiology, 17, 411–423.
Gould, S. J. (1993). How to analyze Burgess Shale disparity – a reply to Ridley. Paleobiology, 19, 522–523.
Gould, S. J. (1995). A task for paleobiology at the threshold of majority. Paleobiology, 21, 1–14.
Hammer, Ø. and Bucher, H. (2005). Models for the morphogenesis of the molluscan shell. Lethaia, 38, 111–122.
Hertel, F. and Lehman, N. (1998). A randomized nearest-neighbor approach for assessment of character displacement: the vulture guild as a model. Journal of Theoretical Biology, 190, 51–61.
Hickman, C. S. (1993). Theoretical design space: a new paradigm for the analysis of structural diversity. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 190, 169–182.
Honda, H. and Fisher, J. B. (1978). Tree branch angle: maximizing effective leaf area. Science, 199, 888–890.
Hutchinson, J. M. C. (1999). But which morphospace to use?Trends in Ecology and Evolution, 14, 414.
Jablonski, D. (2005). Evolutionary innovations in the fossil record: the intersection of ecology, development, and macroevolution. Journal of Experimental Zoology Part B (Molecular and Developmental Evolution), 304B, 504–519.
Kauffman, S. A. (1993). The Origins of Order. Oxford: Oxford University Press.
Kauffman, S. A. (1995). At Home in the Universe. Oxford: Oxford University Press.
Keller, E. F. (2002). Making Sense of Life: Explaining Biological Development with Models, Metaphors, and Machines. Cambridge, MA: Harvard University Press.
Kendrick, D. C. (2007). Theoretical morphology of crinoid calyxes. Paleobiology, in press.
Kershaw, S. and Riding, R. (1978). Parameterization of stromatoporoid shape. Lethaia, 11, 233–242.
Kohn, A. J. and Riggs, A. C. (1975). Morphometry of the Conus shell. Systematic Zoology, 24, 346–359.
Korn, D. (2000). Morphospace occupation of ammonoids over the Devonian–Carboniferous boundary. Paläontologische Zeitschrift, 74, 247–257.
Kuhn-Schnyder, E. and Rieber, H. (1986). Handbook of Paleozoology. Baltimore: Johns Hopkins University Press.
McCartney, K. and Loper, D. E. (1989). Optimized skeletal morphologies of silicoflagellate genera Dictyocha and Distephanus. Paleobiology, 15, 283–298.
McCartney, K. and Loper, D. E. (1992). Optimal models of skeletal morphology for the silicoflagellate genus Corbisema. Micropaleontology, 38, 87–93.
McGhee, G. R. Jr. (1980a). Shell form in the biconvex articulate Brachiopoda: a geometric analysis. Paleobiology, 6, 57–76.
McGhee, G. R. Jr. (1980b). Shell geometry and stability strategies in the biconvex Brachiopoda. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1980(3), 155–184.
McGhee, G. R. Jr. (1988). The Late Devonian extinction event: evidence for abrupt ecosystem collapse. Paleobiology, 14, 250–257.
McGhee, G. R. Jr. (1991). Theoretical morphology: the concept and its applications. In Analytical Paleobiology, eds. Gilinsky, N. L. and Signor, P. W., pp. 87–102. Short Courses in Paleontology No. 4, the Paleontological Society and the Univeristy of Tennessee, Knoxville.
McGhee, G. R. Jr. (1995). Geometry of evolution in the biconvex Brachiopoda: morphological effects of mass extinction. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 197, 357–382.
McGhee, G. R. Jr. (1999). Theoretical Morphology: the Concept and Its Applications. New York: Columbia University Press.
McGhee, G. R. Jr. (2001a). Exploring the spectrum of existent, nonexistent and impossible biological form. Trends in Ecology and Evolution, 16, 172–173.
McGhee, G. R. Jr. (2001b). The question of spiral axes and brachiopod shell growth: a comparison of morphometric techniques. Paleobiology, 27, 716–723.
McGhee, G. R. Jr. (2006). Exploring the spectrum of existent, nonexistent, and impossible biological form: a research program. In Modeling Biology: Structures, Behaviors, Evolution, eds. Laubichler, M. and G. B. Müller, pp. in press. Cambridge (MA): Vienna Series in Theoretical Biology, Massachusetts Institute of Technology Press.
McGhee, G. R. Jr. and McKinney, F. K. (2000). A theoretical morphologic analysis of convergently evolved erect helical colony form in the Bryozoa. Paleobiology, 26, 556–577.
McGhee, G. R. Jr. and McKinney, F. K. (2002). A theoretical morphologic analysis of ecomorphologic variation in Archimedes helical colony form. Palaios, 17, 556–570.
McGhee, G. R. Jr. and Starcher, R. W. (2006). Geometric models of lophophore shape and arrangement in extinct modular organisms. Journal of Paleontology, in press.
McGhee, G. R. Jr., Bayer, U., and Seilacher, A. (1991). Biological and evolutionary responses to transgressive-regressive cycles. In Cycles and Events in Stratigraphy, eds. Einsele, G., Ricken, W., and A. Seilacher, pp. 696–708. Berlin: Springer Verlag.
McGhee, G. R. Jr., Sheehan, P. M., Bottjer, D. J., and Droser, M. L. (2004). Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeography, Palaeoclimatology, Palaeoecology, 211, 289–297.
McGowan, A. J. (2004). The effect of the Permo-Triassic bottleneck on Triassic ammonoid morphological evolution. Paleobiology, 30, 369–395.
McHenry, M. J. and Patek, S. N. (2004). The evolution of larval morphology and swimming performance in ascidians. Evolution, 58, 1209–1224.
Mack, R. N. (2003). Phylogenetic constraint, absent life forms, and preadapted alien plants: a prescription for biological invasions. International Journal of Plant Science, 164(3 Supplement), S185–S196.
McKinney, F. K. and McGhee, G. R. Jr. (2003). Evolution of erect helical colony form in the Bryozoa: phylogenetic, functional, and ecological factors. Biological Journal of the Linnean Society, 80, 360–367.
McKinney, F. K. and McGhee, G. R. Jr. (2004). Erratum: Evolution of erect helical colony form in the Bryozoa. Biological Journal of the Linnean Society, 81, 619–620.
McKinney, F. K. and Raup, D. M. (1982). A turn in the right direction: simulation of erect spiral growth in the bryozoans Archimedes and Bugula. Paleobiology, 8, 101–112.
McKitrick, M. C. (1993). Phylogenetic constraint in evolutionary theory: has it any explanatory power?Annual Review of Ecology and Systematics, 24, 307–330.
Maclaurin, J. (2003). The good, the bad and the impossible. Biology and Philosophy, 18, 463–476.
Maynard Smith, J., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., Lande, R., Raup, D., and Wolpert, L. (1985). Developmental constraints and evolution. Quarterly Review of Biology, 60, 265–287.
Merks, R. M. H., Hoekstra, A. G., Kaandorp, J. A., Sloot, P. M. A., and Hogeweg, P. (2006). Problem-solving environments for biological morphogenesis. Computing in Science and Engineering, 8(1), 61–72.
Meyer, A. (2003). There and back again. Nature, 424, 255.
Minelli, A. (2003). The Development of Animal Form: Ontogeny, Morphology, and Evolution. Cambridge: Cambridge University Press.
Müller, G. B. and Newman, S. A. (2003). Origination of Organismal Form: Beyond the Gene in Deveopmental and Evolutionary Biology. Cambridge (MA): Vienna Series in Theoretical Biology, Massachusetts Institute of Technology Press.
Müller, G. B. and Newman, S. A. (2005). The innovation triad: an evodevo agenda. Journal of Experimental Zoology Part B (Molecular and Developmental Evolution), 304B, 487–503.
Müller, G. B. and Wagner, G. P. (1991). Novelty in evolution: restructuring the concept. Annual Review of Ecology and Systematics, 22, 229–256.
Newman, M. E. J. and Palmer, R. G. (2003). Modeling Extinction. Oxford: Oxford University Press.
Niklas, K. J. (1986). Computer-simulated plant evolution. Scientific American, 254 (March), 78–86.
Niklas, K. J. (1997a). Effects of hypothetical developmental barriers and abrupt environmental changes on adaptive walks in a computer-generated domain for early vascular land plants. Paleobiology, 23, 63–76.
Niklas, K. J. (1997b). The Evolutionary Biology of Plants. Chicago: University of Chicago Press.
Niklas, K. J. (2004). Computer models of early land plant evolution. Annual Review of Earth and Planetary Sciences, 32, 47–66.
Niklas, K. J. (2006). Optimization and early land plant evolution. In Modeling Biology: Structures, Behavior, Evolution, eds. Laubichler, M. and Müller, G. B., in press. Cambridge (MA): Vienna Series in Theoretical Biology, Massachusetts Institute of Technology Press.
Niklas, K. J. and Kerchner, V. (1984). Mechanical and photosynthetic constraints on the evolution of plant shape. Paleobiology, 10, 79–101.
Okamoto, T. (1988). Analysis of heteromorph ammonoids by differential geometry. Palaeontology, 31, 35–52.
Olsen, E. C. and Miller, R. L. (1958). Morphological Integration. Chicago: University of Chicago Press.
Oster, G. F., Shubin, N., Murray, J. D., and Alberch, P. (1988). Evolution and morphogenetic rules: the shape of the vertebrate limb in ontogeny and phylogeny. Evolution, 42, 862–884.
Popov, I. Y. (2002). “Periodical systems” in biology (a historical issue). Verhandlungen zur Geschichte und Theorie der Biologie, 9, 55–68.
Rasskin-Gutman, D. (2003). Boundary constraints for the emergence of form. In Origination of Organismal Form: Beyond the Gene in Developmental and Evolutionary Biology, eds. Müller, G. B. and Newman, S. A., pp. 305–322. Cambridge (MA): Vienna Series in Theoretical Biology, Massachusetts Institute of Technology Press.
Rasskin-Gutman, D. (2005). Modularity: jumping forms within morphospace. In Modularity: Understanding the Development and Evolution of Natural Complex Systems, eds. Callebaut, M. and Rasskin-Gutman, D., pp. 207–219. Cambridge (MA): Vienna Series in Theoretical Biology, Massachusetts Institute of Technology Press.
Rasskin-Gutman, D. and Buscalioni, A. D. (2001). Theoretical morphology of the Archosaur (Reptilia: Diapsida) pelvic girdle. Paleobiology, 27, 59–78.
Rasskin-Gutman, D. and Izpisúa-Belmonte, J. C. (2004). Theoretical morphology of developmental asymmetries. BioEssays, 26, 405–412.
Raup, D. M. (1961). The geometry of coiling in gastropods. Proceedings of the National Academy of Sciences (USA), 47, 602–609.
Raup, D. M. (1966). Geometric analysis of shell coiling: general problems. Journal of Paleontology, 40, 1178–1190.
Raup, D. M. (1967). Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology, 41, 43–65.
Raup, D. M. and Michelson, A. (1965). Theoretical morphology of the coiled shell. Science, 147, 1294–1295.
Raup, D. M., McGhee, G. R. Jr., and McKinney, F. K. (2006). Source code for theoretical morphologic simulation of helical colony form in the Bryozoa. Palaeontologia Electronica, 9(2); http://palaeo-electronica.org/paleo/2006_2/helical/index.html.
Reif, W.-E. (1980). A model of morphogenetic processes in the dermal skeleton of elasmobranchs. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 159, 339–359.
Rex, M. A. and Boss, K. J. (1976). Open coiling in recent gastropods. Malacologia, 15, 289–297.
Rice, S. H. (1997). The analysis of ontogenetic trajectories: when a change in size or shape is not heterochrony. Proceedings of the National Academy of Sciences USA, 94, 907–912.
Richtsmeier, J. T. and Lele, S. (1993). A coordinate-free approach to the analysis of growth patterns: models and theoretical considerations. Biological Reviews, 68, 381–411.
Ridley, M. (1996). Evolution. Cambridge (MA): Blackwell Science.
Russell, E. S. (1916). Form and Function: a Contribution to the History of Animal Morphology. Chicago: University of Chicago Press (1982 Reprint).
Saunders, W. B. and Swan, A. R. H. (1984). Morphology and morphologic diversity of mid-Carboniferous (Namurian) ammonoids in time and space. Paleobiology, 10, 195–228.
Saunders, W. B., Work, D. M., and Nikolaeva, S. V. (2004). The evolutionary history of shell geometry in Paleozoic ammonoids. Paleobiology, 30, 19–43.
Savazzi, E. (1985). SHELLGEN: A BASIC program for the modeling of molluscan shell ontogeny and morphogenesis. Computers and Geosciences, 11, 521–530.
Savazzi, E. (1987). Geometric and functional constraints on bivalve shell morphology. Lethaia, 20, 293–306.
Savazzi, E. (1990). C programs for displaying shaded three-dimensional objects on a PC. Computers and Geosciences, 16, 195–209.
Savazzi, E. (1993). C++ classes for theoretical shell morphology. Computers and Geosciences, 19, 931–964.
Schindel, D. E. (1990). Unoccupied morphospace and the coiled geometry of gastropods: architectural constraint or geometric covariation? In Causes of Evolution, eds. Ross, R. A. and Allmon, W. D., pp. 270–304. Chicago: University of Chicago Press.
Schwenk, K. (1995). A utilitarian approach to constraint. Zoology, 98, 251–262.
Signes, M., Bijma, J., Hemleben, C., and Ott, R. (1993). A model for planktic foraminiferal shell growth. Paleobiology, 19, 71–91.
Simpson, G. G. (1944). Tempo and Mode in Evolution. New York: Columbia University Press.
Simpson, G. G. (1953). The Major Features of Evolution. New York: Columbia University Press.
Snoad, N. and Nilsson, M. (2003). Quasispecies evolution on dynamic fitness landscapes. In Evolutionary Dynamics: Exploring the Interplay of Selection, Accident, Neutrality, and Function, eds. Crutchfield, J. P. and Schuster, P., pp. 273–289. Oxford: Oxford University Press.
Solé, R. (2002). Modelling macroevolutionary patterns: an ecological perspective. In Biological Evolution and Statistical Physics, eds. Lässig, M. and Valleriani, A., pp. 312–337. Berlin: Springer Verlag.
Solé, R. and Goodwin, B. (2000). Signs of Life: How Complexity Pervades Biology. New York: Basic Books.
Stadler, P. F. (2002). Fitness landscapes. In Biological Evolution and Statistical Physics, eds. Lässig, M. and Valleriani, A., pp. 183–204. Berlin: Springer Verlag.
Stadler, B. M. R. and Stadler, P. F. (2004). The topology of evolutionary biology. In Modeling in Molecular Biology, eds. Ciobanu, G. and Rozenberg, G., pp. 267–286. Berlin: Springer Verlag.
Stadler, B. M. R., Stadler, P. F., Wagner, G. P., and Fontana, W. (2001). The topology of the possible: formal spaces underlying patterns of evolutionary change. Journal of Theoretical Biology, 213, 241–274.
Starcher, R. W. and McGhee, G. R. Jr. (2000). Fenestrate theoretical morphology: geometric constraints on lophophore shape and arrangement in extinct Bryozoa. Paleobiology, 26, 116–136.
Starcher, R. W. and McGhee, G. R. Jr. (2002). Theoretical morphology of modular organisms: geometric constraints of branch and dissepiment width and spacing in fenestrate bryozoans. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 223, 79–122.
Starcher, R. W. and McGhee, G. R. Jr. (2003). Fenestrate graptolite theoretical morphology: geometric constraints on lophophore shape and arrangement in extinct hemichordates. Journal of Paleontology, 77, 360–367.
Stone, J. R. (1996). Computer simulated shell shape and size variation in the Caribbean land snail genus Cerion: a test of geometrical constraints. Evolution, 50, 341–347.
Stone, J. R. (1998). Ontogenic tracks and evolutionary vestiges in morphospace. Biological Journal of the Linnean Society, 64, 223–238.
Stone, J. R. (1999). Using a mathematical model to test the null hypothesis of optimal shell construction by four marine gastropods. Marine Biology, 134, 397–403.
Stone, J. R. (2002). Delayed prezygotic isolating mechanisms: evolution with a twist. Proceedings of the Royal Society of London, 269, 861–865.
Stone, J. R. (2004). Nonoptimal shell forms as overlapping points in functional and theoretical morphospaces. American Malacological Bulletin, 18, 129–134.
Strathmann, R. R. (1978). Progressive vacating of adaptive types during the Phanerozoic. Evolution, 32, 907–914.
Streidter, G. F. (2003). Epigenesis and evolution of brains: from embryonic divisions to functional systems. In Origination of Organismal Form: Beyond the Gene in Developmental and Evolutionary Biology, eds. Müller, G. B. and Newman, S. A., pp. 287–303. Cambridge (MA): Vienna Series in Theoretical Biology, Massachusetts Institute of Technology Press.
Swan, A. R. H. (1990). A computer simulation of evolution by natural selection. Journal of the Geological Society of London, 147, 223–228.
Swan, A. R. H. (1999). Computer models of fossil morphology. In Numerical Palaeobiology, ed. Harper, D. A. T., pp. 157–179. London: John Wiley and Sons Ltd.
Swan, A. R. H. and Kershaw, S. (1994). A computer model for skeletal growth of stromatoporoids. Palaeontology, 37, 409–423.
Thom, R. (1975). Structural Stability and Morphogenesis: an Outline of a General Theory of Models. Reading, MA: W. A. Benjamin, Inc.
Thomas, R. D. K. (2005). Hierarchial integration of modular structures in the evolution of animal skeletons. In Modularity: Understanding the Development and Evolution of Natural Complex Systems, eds. Callebaut, M. and Rasskin-Gutman, D., pp. 239–258. Cambridge (MA): Vienna Series in Theoretical Biology, Massachusetts Institute of Technology Press.
Thomas, R. D. K. and Reif, W.-E. (1993). The skeleton space: a finite set of organic designs. Evolution, 47, 341–360.
Thomas, R. D. K., Shearman, R. M., and Stewart, G. W. (2000). Evolutionary exploitation of design options by the first animals with hard skeletons. Science, 288, 1239–1242.
Thompson, D'A. W. (1917). On Growth and Form. Cambridge: Cambridge University Press.
Thompson, D'A. W. (1942). On Growth and Form. Cambridge: Cambridge University Press.
Tyszka, J. (2006). Morphospace of foraminiferal shells: results from the moving reference model. Lethaia, 39, 1–12.
Tyszka, J. and Topa, P. (2005). A new approach to modeling of foraminiferal shells. Paleobiology, 31, 522–537.
Ubukata, T. (2000). Theoretical morphology of hinge and shell form in Bivalvia: geometric constraints derived from space conflict between umbones. Paleobiology, 26, 606–624.
Ubukata, T. (2001). Stacking increments: a new model and morphospace for the analysis of bivalve shell growth. Historical Biology, 15, 303–321.
Ubukata, T. (2003a). A theoretical morphologic analysis of bivalve ligaments. Paleobiology, 29, 369–380.
Ubukata, T. (2003b). Pattern of growth rate around aperture and shell form in Bivalvia: a theoretical morphological study. Paleobiology, 29, 480–491.
Ubukata, T. (2005). Theoretical morphology of bivalve shell sculptures. Paleobiology, 31, 643–655.
Valen, L. (1973). A new evolutionary theory. Evolutionary Theory, 1, 1–30.
Valkenburgh, B. (1985). Locomotor diversity within past and present guilds of large predatory mammals. Paleobiology, 11, 406–428.
Valkenburgh, B. (1988). Trophic diversity in past and present guilds of large predatory mammals. Paleobiology, 14, 155–173.
Waddington, C. H. (1957). The Strategy of the Genes: a Discussion of some Aspects of Theoretical Biology. London: Allen and Unwin.
Waddington, C. H. (1975). The Evolution of an Evolutionist. Ithaca: Cornell University Press.
Wagner, G. P. (2001). What is the promise of developmental evolution? Part II: A causal explanation of evolutionary innovations may be impossible. Journal of Experimental Zoology, 291, 305–309.
Wagner, G. P. and Altenberg, L. (1996). Complex adaptations and the evolution of evolvability. Evolution, 50, 967–976.
Ward, P. (1980). Comparative shell shape distributions in Jurassic–Cretaceous ammonites and Jurassic-Tertiary nautilids. Paleobiology, 6, 32–43.
Waters, J. A. (1977). Quantification of shape by use of Fourier analysis: the Mississippian blastoid genus Pentremites. Paleobiology, 3, 288–299.
Williamson, P. G. (1981). Palaeontological documentation of speciation in Cenozoic molluscs from Turkana Basin. Nature, 293, 437–443.
Wilson, E. O. and Bossert, W. H. (1971). A Primer of Population Biology. Sunderland: Sinauer.
Wolfram, S. (2002). A New Kind of Science. Champaign, IL: Wolfram Media, Inc.
Wray, G. A. (2002). Do convergent developmental mechanisms underlie convergent phenotypes?Brain, Behavior and Evolution, 59, 327–336.
Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proceedings of the Sixth International Congress of Genetics, 1, 356–366.
Zwieniecki, M. A., Boyce, C. K., and Holbrook, N. M. (2004). Functional design space of single-veined leaves: role of tissue hydraulic properties in constraining leaf size and shape. Annals of Botany, 94, 507–513.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.