Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T07:06:09.727Z Has data issue: false hasContentIssue false

1 - An introduction to liquid matter

Published online by Cambridge University Press:  06 January 2010

Jean-Louis Barrat
Affiliation:
Université Lyon I
Jean-Pierre Hansen
Affiliation:
University of Cambridge
Get access

Summary

One of the most remarkable observations in physical sciences or, for that matter, of everyday life, is that most substances, with a well defined chemical composition, can exist in one of several states, exhibiting very different physical properties on the macroscopic scale; moreover one can transform the substance from one state (or phase) to another, simply by varying thermodynamic conditions, like temperature or pressure. In other words, a collection of N molecules, where N is typically of the order of Avogadro's number NA, will spontaneously assemble into macroscopic states of different symmetry and physical behaviour, depending on a limited number of thermodynamic parameters. The most common states are either solid or fluid in character, and are characterized by qualitatively different responses to an applied stress. At ambient temperatures, the solid states of matter are generally associated with the mineral world, while ‘soft’ matter, and in particular the liquid state, are more intimately related to life sciences. In fact it is generally accepted that life took its origin in the primordial oceans, thus underlining the importance of a full quantitative understanding of liquids. However, even for the simplest substances, there are at least two different fluid states, namely a low density ‘volatile’ gas (or vapour) phase, which condenses into a liquid phase of much higher density upon compression or cooling. For more complex substances, generally made up of highly anisotropic molecules or of flexible macromolecules, the liquid state itself exhibits a rich variety of structures and phases, often referred to as ‘complex fluids’.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×