Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T17:24:26.490Z Has data issue: false hasContentIssue false

5 - Inhibition of signal transduction pathways prevents head regeneration in hydra

Published online by Cambridge University Press:  11 August 2009

L. M. Salgado
Affiliation:
CINVESTAV-IPN, Dpto. Biochemistry, Apartado Postal 14-740, 07000 México, D.F., México
Manuel Marí-Beffa
Affiliation:
Universidad de Málaga, Spain
Jennifer Knight
Affiliation:
University of Colorado, Boulder
Get access

Summary

OBJECTIVE OF THE EXPERIMENT Development is the result of the coordinated expression, at the right time and in the right place, of a set of genes. The expression pattern of these mostly regulatory genes depends on the ability of cells to interpret different signals from their neighbors and from their position in the embryo. This chapter presents an easy way to analyze some of the signaling systems typically used by cells to acquire their correct fate. By using well-defined chemicals to selectively block key enzymes in signaling pathways, the normal role of these signaling pathways in hydra development can be determined.

DEGREE OF DIFFICULTY Medium.

INTRODUCTION

Hydra is an evolutionary old metazoan. Its tissue organization is simple, but its cells are determined via a complex pattern of cell–cell interactions. A hydra is essentially a tube consisting of two layers of tissue, the ectoderm and the endoderm, separated by an intermediate layer, the mesoglea. There are two cell lineages, the muscular epithelium and the interstitial stem cells, from which all the cells derive. The adult animal has around 100,000 cells that can be grouped into twelve different tissues. Hydra can reproduce either sexually or asexually. Most significantly, hydra has a high capacity for regeneration and is one of the more complex organisms that is able to regenerate from cell aggregates. These features make hydra an ideal model for studying morphogenesis and differentiation in the adult animal (Gierer, 1974).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, H., Crim, W., Romano, M., Sybertz, E., and Pitts, B. (1989). Effects of selective inhibitors on cyclic nucleotide phosphodiesterases of rabbit aorta. Biochem. Pharmacol, 38, 3331–9Google ScholarPubMed
Alessi, D., Cuenda, A., Cohen, P., Dudley, D., and Saltiel, A. (1995). PD 98059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J. Biol. Chem., 270, 27489–94CrossRefGoogle ScholarPubMed
Bode, H. R. (1996). The interstitial cell lineage of hydra: A stem cell system that arose early in evolution. J. Cell. Sci., 109, 1155–64Google Scholar
Bode, P. M., and Bode, H. R. (1980). Formation of pattern in regenerating tissue pieces of Hydra attenuata. I. Head-body portion regulation. Dev. Biol., 78, 484–96CrossRefGoogle Scholar
Broun, M., and Bode, H. R. (2002). Characterization of the head organizer in hydra. Development, 129, 875–84Google ScholarPubMed
Cardenas, M., Fabila, Y., Yum, S., Cerbon, J., Böhmer, F. D., Wetzker, R., Fujisawa, T., Bosch, T. C. G., and Salgado, L. M. (2000). Selective protein kinase inhibitors block head specific differentiation in hydra. Cell Signal., 12, 649–58CrossRefGoogle ScholarPubMed
Endl, I., Lohmann, J. U., and Bosch, T. C. G. (1999). Head-specific gene expression in hydra: complexity of DNA-protein interactions at the promoter of ks1 is inversely correlated to the head activation potential. Proc. Natl. Acad. Sci. USA, 96, 1445–50CrossRefGoogle ScholarPubMed
Fabila, Y., Navarro, L., Fujisawa, T., Bode, H. R., and Salgado, L. M. (2002). Selective inhibition of protein kinases blocks the formation of a new axis, the beginning of budding, in hydra. Mech. Dev., 119, 157–64CrossRefGoogle ScholarPubMed
Galli, C., Meucci, O., Scorziello, A., Werge, T., Calissano, P., and Schettini, G. (1995). Apoptosis in cerebellar granule cells is blocked by high KCl, forskolin, and IGF-1 through distinct mechanisms of action: the involvement of intracellular calcium and RNA synthesis. J. Neurosci., 15, 1172–9CrossRefGoogle ScholarPubMed
Gierer, A. (1970). A theory of biological pattern formation. Kybernetik, 12, 30–9CrossRefGoogle Scholar
Gierer, A. (1974). Hydra as a model for the development of biological form. Sci. Am., 231, 544–59CrossRefGoogle ScholarPubMed
Grens, A., Gee, L., Fisher, D. A., and Bode, H. R. (1996). cnNK-2, an NK-2 homeobox gene, has a role in patterning the basal end of the axis in hydra. Dev. Biol., 180, 473–88CrossRefGoogle Scholar
Hanke, J. H., Gardner, J. P., Dow, R. L., Changelian, P. S., Brissette, W., Weringer, E. J., Pollok, B. A., and Connelly, P. A. (1996). Discovery of a novel and Src family-selective tyrosine kinase inhibitor. Study of Lck- and Fyn T-dependent cell activation. J. Biol. Chem., 271, 695–701CrossRefGoogle Scholar
Kuo, M. L., and Yang, N. C. (1995). Reversion of v-H-ras transformed NIH 3T3 cells by apigenin through inhibiting mitogen activated protein kinase and its downstream oncogenes. Biochem. Biophys. Res. Comm., 212, 767–75CrossRefGoogle ScholarPubMed
Martínez, D. E., Dirksen, M. L., Bode, P. M., Jamrich, M., Steele, R. E., and Bode, H. R. (1997). Budhead, a fork head/HNF-3 homologue, is expressed during axis formation and head specification in hydra. Dev. Biol., 192, 523–36CrossRefGoogle ScholarPubMed
Müller, W. (1996). Pattern formation in the immortal Hydra. Trends Genetics, 12, 91–6CrossRefGoogle ScholarPubMed
Otto, J. (1976). Budding in Hydra attenuata: Bud stages and fate map. J. Exp. Zool, 200, 417–28CrossRefGoogle Scholar
Posner, B. I., Faure, R., Burgess, J. W., Bevan, A. P., Lachance, D., Zhang-Sun, G., Fantus, I. G., Hall, D. A., and Lum, B. S. (1994). Peroxovanadium compounds. A new class of potent phosphotyrosine phosphatase inhibitors which are insulin mimetics. J. Biol. Chem., 269, 4596–604Google ScholarPubMed
Smith, K. M., Gee, L., and Bode, H. R. (2000). HyAlx, an aristaless-related gene, is involved in tentacle formation in hydra. Development, 127, 4743–52Google ScholarPubMed
Takano, J., and Sugiyama, T. (1983). Genetic analysis of developmental mechanisms in hydra. VIII. Head-activation and head-inhibition potentials of a slow-budding strain (L4). J. Embryol. Exp. Morphol., 78, 141–68Google Scholar
Technau, U., and Bode, H. R. (1999). HyBra1, a Brachyury homologue, acts during head formation in Hydra. Development, 126, 999–1010Google ScholarPubMed
Vlahos, C. J., Matter, W., Hui, K., and Brown, R. (1994). A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem., 269, 5241–8Google Scholar
Weinziger, R., Salgado, L. M., David, C. N., and Bosch, T. C. G. (1994). Ks1, an epithelial cell-specific gene, responds to early signals of head formation in Hydra. Development, 120, 2511–7Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×