Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T16:52:34.633Z Has data issue: false hasContentIssue false

6 - Gene expression profiling can distinguish tumor subclasses of breast carcinomas

Published online by Cambridge University Press:  05 September 2009

Ingrid A. Hedenfalk
Affiliation:
Department of Oncology, Lund University, Sweden
Wolf-Karsten Hofmann
Affiliation:
Charite-University Hospital Benjamin Franklin, Berlin
Get access

Summary

Introduction

Breast cancer is known to be a heterogeneous and multifactorial disease, affecting approximately one in ten women in the Western world. While the majority of breast cancer patients respond to initial treatment (local and systemic), a large fraction of patients relapse over time and suffer through sometimes inefficient chemotherapeutic treatment regimens. A small number of biomarkers for targeted treatment exist, e.g., presence of the estrogen receptor (ER) is used to predict response to anti-estrogen treatment and patients whose tumors overexpress HER2/neu can be treated with Herceptin®. Nevertheless, little progress has been made when it comes to tailoring treatment and identifying novel therapeutic targets for the clinical management of breast cancer patients. With the advent of high-throughput genetic profiling techniques, simultaneous assessment of thousands of genes in single experiments is now possible, thereby augmenting the degree of complexity in genetic patterns that can be investigated, and increasing the likelihood of identifying potential therapeutic targets in primary breast carcinomas. Global gene expression profiling studies conducted over the last couple of years have shown that molecular profiling of breast cancers can be used to identify clinically and genetically significant subtypes of breast carcinomas [1–4] and subgroups of patients with different prognosis or disease outcome [5–7], and to predict therapeutic response to both endocrine and chemotherapeutic drugs [8–12]. Gene expression profiling may indeed become a general strategy for personalizing treatment choices and for predicting clinical outcome in individual patients in the not too distant future.

Type
Chapter
Information
Gene Expression Profiling by Microarrays
Clinical Implications
, pp. 132 - 161
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Perou, C. M., Sorlie, T., Eisen, M. B.et al. Molecular portraits of human breast tumours. Nature 2000; 406(6797): 747–52.CrossRefGoogle ScholarPubMed
Hedenfalk, I., Duggan, D., Chen, Y.et al. Gene-expression profiles in hereditary breast cancer. N. Engl. J. Med. 2001; 344(8): 539–48.CrossRefGoogle ScholarPubMed
Gruvberger, S., Ringner, M., Chen, Y.et al. Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res. 2001; 61(16): 5979–84.Google ScholarPubMed
Hedenfalk, I., Ringner, M., Ben-Dor, A.et al. Molecular classification of familial non-Brca1/Brca2 breast cancer. Proc. Natl Acad. Sci. USA 2003; 100(5): 2532–7.CrossRefGoogle ScholarPubMed
Sorlie, T., Perou, C. M., Tibshirani, R.et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 2001; 98(19): 10869–74.CrossRefGoogle ScholarPubMed
van't Veer, L. J., Dai, H., Vijver, M. J.et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415(6871): 530–6.CrossRefGoogle Scholar
Vijver, M. J., He, Y. D., van't Veer, L. J.et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 2002; 347(25): 1999–2009.CrossRefGoogle ScholarPubMed
Chang, J. C., Wooten, E. C., Tsimelzon, A.et al. Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet 2003; 362(9381): 362–9.CrossRefGoogle ScholarPubMed
Ma, X. J., Wang, Z., Ryan, P. D.et al. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 2004; 5(6): 607–16.CrossRefGoogle ScholarPubMed
Paik, S., Shak, S., Tang, G.et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 2004; 351(27): 2817–26.CrossRefGoogle ScholarPubMed
Iwao-Koizumi, K., Matoba, R., Ueno, N.et al. Prediction of docetaxel response in human breast cancer by gene expression profiling. J. Clin. Oncol. 2005; 23(3): 422–31.CrossRefGoogle ScholarPubMed
Jansen, M. P., Foekens, J. A., Staveren, I. L.et al. Molecular classification of tamoxifen-resistant breast carcinomas by gene expression profiling. J. Clin. Oncol. 2005; 23(4): 732–40.CrossRefGoogle ScholarPubMed
Osborne, C. K.Tamoxifen in the treatment of breast cancer. N. Engl. J. Med. 1998; 339(22): 1609–18.CrossRefGoogle ScholarPubMed
West, M., Blanchette, C., Dressman, H.et al. Predicting the clinical status of human breast cancer by using gene expression profiles. Proc. Natl Acad. Sci. USA 2001; 98(20): 11462–7.CrossRefGoogle ScholarPubMed
Kordon, E. C. and Smith, G. H.An entire functional mammary gland may comprise the progeny from a single cell. Development 1998; 125(10): 1921–30.Google ScholarPubMed
Gudjonsson, T., Villadsen, R., Nielsen, H. L.et al. Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties. Genes Dev. 2002; 16(6): 693–706.CrossRefGoogle ScholarPubMed
Sorlie, T., Tibshirani, R., Parker, J.et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA 2003; 100(14): 8418–23.CrossRefGoogle ScholarPubMed
Sotiriou, C., Neo, S. Y., McShane, L. M.et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc. Natl Acad. Sci. USA 2003; 100(18): 10393–8.CrossRefGoogle ScholarPubMed
Miki, Y., Swensen, J., Shattuck-Eidens, D.et al. A strong candidate for the breast and ovarian cancer susceptibility gene Brca1. Science 1994; 266(5182): 66–71.CrossRefGoogle ScholarPubMed
Wooster, R., Bignell, G., Lancaster, J.et al. Identification of the breast cancer susceptibility gene Brca2. Nature 1995; 378(6559): 789–92.CrossRefGoogle ScholarPubMed
Esteller, M., Silva, J. M., Dominguez, G.et al. Promoter hypermethylation and Brca1 inactivation in sporadic breast and ovarian tumors [see comments]. J. Natl Cancer Inst. 2000; 92(7): 564–9.CrossRefGoogle Scholar
Jones, P. A. and Baylin, S. B.The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 2002; 3(6): 415–28.CrossRefGoogle Scholar
Hedenfalk, I., Simon, R., and Trent, J.Gene-expression profiles in hereditary breast cancer. N. Engl. J. Med. 2001; 344(26): 2029.CrossRefGoogle ScholarPubMed
Fan, S., Wang, J., Yuan, R.et al. Brca1 inhibition of estrogen receptor signaling in transfected cells. Science 1999; 284(5418): 1354–6.CrossRefGoogle ScholarPubMed
Ma, Y. X., Tomita, Y., Fan, S.et al. Structural determinants of the Brca1: estrogen receptor interaction. Oncogene 2005; 24(11): 1831–46.CrossRefGoogle ScholarPubMed
Szabo, C. I. and King, M. C.Population genetics of Brca1 and Brca2. Am. J. Hum. Genet. 1997; 60(5): 1013–20.Google ScholarPubMed
Kainu, T., Juo, S. H., Desper, R.et al. Somatic deletions in hereditary breast cancers implicate 13q21 as a putative novel breast cancer susceptibility locus. Proc. Natl Acad. Sci. USA 2000; 97(17): 9603–8.CrossRefGoogle ScholarPubMed
Meijers-Heijboer, H., Ouweland, A., Klijn, J.et al. Low-penetrance susceptibility to breast cancer due to Chek2(∗)1100delc in noncarriers of Brca1 or Brca2 mutations. Nat. Genet. 2002; 31(1): 55–9.Google ScholarPubMed
Cristofanilli, M., Gonzalez-Angulo, A., Sneige, N.et al. Invasive lobular carcinoma classic type: response to primary chemotherapy and survival outcomes. J. Clin. Oncol. 2005; 23(1): 41–8.CrossRefGoogle ScholarPubMed
Zhao, H., Langerod, A., Ji, Y.et al. Different gene expression patterns in invasive lobular and ductal carcinomas of the breast. Mol. Biol. Cell 2004; 15(6): 2523–36.CrossRefGoogle ScholarPubMed
Ramaswamy, S., Ross, K. N., Lander, E. S.et al. A molecular signature of metastasis in primary solid tumors. Nat. Genet. 2003; 33(1): 49–54.CrossRefGoogle ScholarPubMed
Schmidt-Kittler, O., Ragg, T., Daskalakis, A.et al. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc. Natl Acad. Sci. USA 2003; 100(13): 7737–42.CrossRefGoogle ScholarPubMed
Weigelt, B., Glas, A. M., Wessels, L. F.et al. Gene expression profiles of primary breast tumors maintained in distant metastases. Proc. Natl Acad. Sci. USA 2003; 100(26): 15901–5.CrossRefGoogle ScholarPubMed
Kang, Y., Siegel, P. M., Shu, W.et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003; 3(6): 537–49.CrossRefGoogle ScholarPubMed
Ahr, A., Karn, T., Solbach, C.et al. Identification of high risk breast-cancer patients by gene expression profiling. Lancet 2002; 359(9301): 131–2.CrossRefGoogle ScholarPubMed
Huang, E., Cheng, S. H., Dressman, H.et al. Gene expression predictors of breast cancer outcomes. Lancet 2003; 361(9369): 1590–6.CrossRefGoogle ScholarPubMed
Nagahata, T., Onda, M., Emi, M.et al. Expression profiling to predict postoperative prognosis for estrogen receptor-negative breast cancers by analysis of 25,344 genes on a Cdna microarray. Cancer Sci. 2004; 95(3): 218–25.CrossRefGoogle ScholarPubMed
Onda, M., Emi, M., Nagai, H.et al. Gene expression patterns as marker for 5-year postoperative prognosis of primary breast cancers. J. Cancer Res. Clin. Oncol. 2004; 130(9): 537–45.CrossRefGoogle ScholarPubMed
Jones, C., Mackay, A., Grigoriadis, A.et al. Expression profiling of purified normal human luminal and myoepithelial breast cells: identification of novel prognostic markers for breast cancer. Cancer Res. 2004; 64(9): 3037–45.CrossRefGoogle ScholarPubMed
Wang, Y., Klijn, J. G., Zhang, Y.et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 2005; 365(9460): 671–9.CrossRefGoogle ScholarPubMed
Jones, C., Ford, E., Gillett, C.et al. Molecular cytogenetic identification of subgroups of grade Iii invasive ductal breast carcinomas with different clinical outcomes. Clin. Cancer Res. 2004; 10(18 Pt 1): 5988–97.CrossRefGoogle ScholarPubMed
Goldhirsch, A., Glick, J. H., Gelber, R. D.et al. International Consensus Panel on the treatment of primary breast cancer. Seventh International Conference on adjuvant therapy of primary breast cancer. J. Clin. Oncol. 2001; 19(18): 3817–27.CrossRefGoogle ScholarPubMed
Eifel, P., Axelson, J. A., Costa, J.et al. National Institutes of Health Consensus Development Conference Statement: adjuvant therapy for breast cancer, November 1–3, 2000. J. Natl Cancer Inst. 2001; 93(13): 979–89.Google ScholarPubMed
Blamey, R. W., Davies, C. J., Elston, C. W.et al. Prognostic factors in breast cancer – the formation of a prognostic index. Clin. Oncol. 1979; 5(3): 227–36.Google ScholarPubMed
Eden, P., Ritz, C., Rose, C.et al. “Good Old” clinical markers have similar power in breast cancer prognosis as microarray gene expression profilers. Eur. J. Cancer 2004; 40(12): 1837–41.CrossRefGoogle ScholarPubMed
Pittman, J., Huang, E., Dressman, H.et al. Integrated modeling of clinical and gene expression information for personalized prediction of disease outcomes. Proc. Natl Acad. Sci. USA 2004; 101(22): 8431–6.CrossRefGoogle ScholarPubMed
Chang, H. Y., Nuyten, D. S., Sneddon, J. B.et al. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc. Natl Acad. Sci. USA 2005; 102(10): 3738–43.CrossRefGoogle ScholarPubMed
Chang, H. Y., Sneddon, J. B., Alizadeh, A. A.et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol. 2004; 2(2): E7.CrossRefGoogle ScholarPubMed
Gruvberger, S. K., Ringner, M., Eden, P.et al. Expression profiling to predict outcome in breast cancer: the influence of sample selection. Breast Cancer Res. 2003; 5(1): 23–6.CrossRefGoogle ScholarPubMed
Chang, J. C., Wooten, E. C., Tsimelzon, A.et al. Patterns of resistance and incomplete response to docetaxel by gene expression profiling in breast cancer patients. J. Clin. Oncol. 2005; 23(6): 1169–77.CrossRefGoogle ScholarPubMed
Hyman, E., Kauraniemi, P., Hautaniemi, S.et al. Impact of DNA amplification on gene expression patterns in breast cancer. Cancer Res. 2002; 62(21): 6240–5.Google ScholarPubMed
Nessling, M., Richter, K., Schwaenen, C.et al. Candidate genes in breast cancer revealed by microarray-based comparative genomic hybridization of archived tissue. Cancer Res. 2005; 65(2): 439–47.Google ScholarPubMed
Esteller, M.Relevance of DNA methylation in the management of cancer. Lancet Oncol. 2003; 4(6): 351–8.CrossRefGoogle Scholar
Jacquemier, J., Ginestier, C., Rougemont, J.et al. Protein expression profiling identifies subclasses of breast cancer and predicts prognosis. Cancer Res. 2005; 65(3): 767–79.Google ScholarPubMed
Schubert, C. M.Microarray to be used as routine clinical screen. Nat. Med. 2003; 9(1): 9.Google ScholarPubMed
Tuma, R. S.Trial and error: prognostic gene signature study design altered. J. Natl Cancer Inst. 2005; 97(5): 331–3.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×