Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T00:55:27.359Z Has data issue: false hasContentIssue false

4 - Mars Exploration Rovers: chemical composition by the APXS

from Part II - Elemental Composition: Orbital and in situ Surface Measurements

Published online by Cambridge University Press:  10 December 2009

J. Brückner
Affiliation:
Geochemistry Department, Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany
G. Dreibus
Affiliation:
Cosmochemistry Deparment, Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany
R. Gellert
Affiliation:
Department of Physics, University of Guelph Guelph, ON N1G 2W1, Canada
S. W. Squyres
Affiliation:
Department of Astronomy, Cornell University, 428 Space Sciences Building, Ithaca, NY 14853, USA
H. Wänke
Affiliation:
Abteilung Kosmochemie Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany
A. Yen
Affiliation:
JPL/Caltech 4800 Oak Grove Road M/S 183-501 Pasadena, CA 91109-8099, USA
J. Zipfel
Affiliation:
Forschungsinstitut und Naturmuseum Senckenberg Frankfurt/Main, D-60325, Germany
Jim Bell
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

The Alpha Particle X-Ray Spectrometers (APXSs) on board the Mars Exploration Rovers (MERs) determine the elemental compositions of Martian samples. Improvements to the version of the instrument flown on the Mars Pathfinder (MPF) mission allow, for the first time, in situ detection and quantification of trace elements such as nickel, zinc, and bromine. The APXS measurements are performed by placing the sensor head against or immediately above the sample surface. A wealth of compositional diversity has been discovered at the two MER landing sites. At Gusev crater, fresh rock surfaces in the plains resemble primitive basalts, while rocks in the Columbia Hills are significantly weathered and enriched in mobile elements such as phosphorus, sulfur, chlorine, and bromine. Sandstones cemented by sulfates as well as evidence for clay formation have also been found in the Columbia Hills. At Meridiani Planum, the layered sedimentary rocks were found to consist primarily of sulfates mixed with siliciclastic debris. Iron-rich spherules and their fragments, confirmed to be hematitic by the Mössbauer spectrometer (MB), are found armoring the soil bedforms as well as embedded in the outcrop rocks. A variety of unusual objects, including an iron-nickel meteorite and a likely ejecta fragment similar to a Martian meteorite, have also been discovered. The elemental compositions of soils analyzed at both sites are remarkably similar, indicative of global-scale homogenization or the similarity of the soil precursors.

Type
Chapter
Information
The Martian Surface
Composition, Mineralogy and Physical Properties
, pp. 58 - 102
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, D. L., The internal composition of Mars, J. Geophys. Res. 77, 789–95, 1972.CrossRefGoogle Scholar
Arvidson, R. E., Seelos, F. P., Deal, K., et al., Mantled and exhumed terrains in Terra Meridiani, Mars, J. Geophys. Res. 108(E12), ROV 14–1, CiteID 8073, doi:10.1029/2002JE001982, 2003.CrossRefGoogle Scholar
Arvidson, R. E., Squyres, S. W., Anderson, R. C., et al., Overview of the Spirit Mars Exploration Rover Mission to Gusev crater: landing site to Backstay Rock in the Columbia Hills, J. Geophys. Res. – Planet 111, E02S01, doi:10.1029/2005JE002499, 2006.CrossRefGoogle Scholar
Baird, A. K. and Clark, B. C., On the original igneous source of Martian fines, Icarus 45, 113–23, 1981.CrossRefGoogle Scholar
Banin, A., B. C. Clark, and H. Wänke, Surface chemistry and mineralogy. In Mars (ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.), Tucson: The University of Arizona Press, pp. 594–625, 1992.Google Scholar
Bell, J. F. III, Squyres, S. W., Arvidson, R. E., et al., Pancam multispectral imaging results from the Opportunity Rover at Meridiani Planum, Science 306, 1703–9, 2004.CrossRefGoogle ScholarPubMed
Bland, P. A. and Smith, T. B., Meteorite accumulation on Mars, Icarus 144, 21–6, 2000.CrossRefGoogle Scholar
Boynton, W. V., Taylor, G. J., Evans, L. G., et al., Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars, J. Geophys. Res. 112, E12S99, doi:10.1029/2007JE002887, 2007.CrossRefGoogle Scholar
Brückner, J., Dreibus, G., Rieder, R., and Wänke, H., Refined data of APXS analyses of soils and rocks at the Mars Pathfinder site: implications for surface chemistry, J. Geophys. Res. 108(E12), 8094, doi:10.1029/2003JE002060, 2003.CrossRefGoogle Scholar
Christensen, P. R., Bandfield, J. L., Clark, R. N., et al., Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: evidence for near-surface water, J. Geophys. Res. 105(E4), 9623–42, 2000.CrossRefGoogle Scholar
Christensen, P. R., Morris, R. V., Lane, M. D., Bandfield, J. L., and Malin, M. C., Global mapping of Martian hematite mineral deposits: remnants of water-driven processes on early Mars, J. Geophys. Res. – Planets 106(E10), 23873–85, doi:2000JE001415, 2001.CrossRefGoogle Scholar
Christensen, P. R., Wyatt, M. B., Glotch, T. D., et al., Mineralogy at Meridiani Planum from the Mini-TES experiment on the Opportunity Rover, Science 306, 1733–9, 2004.CrossRefGoogle ScholarPubMed
Clark, B. C., Implications of abundant hygroscopic minerals in the Martian regolith, Icarus 34, 645–65, 1978.CrossRefGoogle Scholar
Clark, B. C., Geochemical components in Martian soil, Geochim. Cosmochim. Acta 57, 4575–81, 1993.CrossRefGoogle Scholar
Clark, B. C. and Baird, A. K., Martian regolith X-ray analyzer; Test results of geochemical performance, Geology 1, 15–18, 1973.2.0.CO;2>CrossRefGoogle Scholar
Clark, B. C. and Baird, A. K., Volatiles in the Martian regolith, Geophys. Res. Lett. 6, 811–14, 1979a.CrossRefGoogle Scholar
Clark, B. C. and Baird, A. K., Is the Martian lithospheree sulfur rich?, J. Geophys. Res. 84, 8395–403, 1979b.CrossRefGoogle Scholar
Clark, B. C., Baird, A. K., Weldon, R. J., et al., Chemical composition of Martian fines, J. Geophys. Res. 87(B12), 10059–67, 1982.CrossRefGoogle Scholar
Clark, B. C., Morris, R. V., McLennan, S. M., et al., Chemistry and mineralogy of outcrops at Meridiani Planum, Earth Planet. Sci. Lett. 240, 73–94, 2005.CrossRefGoogle Scholar
Clark, B. C., Arvidson, R. E., Gellert, R., et al., Evidence for montmorillonite or its compositional equivalent in Columbia Hills, Mars, J. Geophys. Res. 112, CiteID E06S01, doi:10.1029/2006JE002756, 2007.CrossRefGoogle Scholar
Connolly, H. C. Jr., Zipfel, J., Grossman, J. N., et al., The Meteoritical Bulletin Number, No. 90, 2006, Meteorit. Planet. Sci. 41(9), 1271–419, 2006.CrossRefGoogle Scholar
Dreibus, G. and Haubold, R., Phosphorus sorption by terrestrial basalt and granite and implications for the martian mantle, Icarus 167, 166–9, 2004.CrossRefGoogle Scholar
Dreibus, G. and Wänke, H., Accretion of the earth and the inner planets, Proc. 27th Int. Geol. Conf. Moskau: Vol. 11, Geochemistry and Cosmochemistry, Utrecht: VNU Science Press, pp. 1–20, 1984.Google Scholar
Dreibus, G. and Wänke, H., Volatiles on Earth and Mars: a comparison, Icarus 71, 225–40, 1987.CrossRefGoogle Scholar
Dreibus, G., Jagoutz, E., Spettel, B., and Wänke, H., Phosphate-mobilization on Mars? Implication from leach experiments on SNC's, Lunar Planet. Sci. XXVII, Houston: Lunar and Planetary Institute, pp. 323–4, Extended Abstract, 1996.Google Scholar
Dreibus, G., J. Brückner, and W. V. Boynton, Evolution of the Martian crust as derived from surface measurements by Mars Odyssey, other space missions, and Martian meteorites, 6th Int. Conf. Mars 2003, Pasadena, CA, USA, Abstract #3088, 2003.
Dyar, D. M., Ferric iron in SNC meteorites as determined by Mössbauer spectroscopy: implications for martian landers and martian oxygen fugacity, Meteorit. Planet. Sci. 38, 1733–52, 2003.CrossRefGoogle Scholar
Feldman, W. C., Prettyman, T. H., Maurice, S., et al., Global distribution of near-surface hydrogen on Mars, J. Geophys. Res. 109(E9), E09006, doi:10.1029/2003JE002160, 2004.CrossRefGoogle Scholar
Foley, C. N., Economou, T. E., Clayton, R. N., and Dietrich, W., Calibration of the Mars Pathfinder alpha proton X-ray spectrometer, J. Geophys. Res. – Planet 108(E12), 8095, doi:10.1029/2002JE002018, 2003a.Google Scholar
Foley, C. N., Economou, T., and Clayton, R. N., Final chemical results from the Mars Pathfinder alpha proton X-ray spectrometer, J. Geophys. Res. – Planets 108(E12), 8096, doi:10.1029/2002JE002019, 2003b.Google Scholar
Gellert, R., Rieder, R., Anderson, R. C., et al., Chemistry of rocks and soils in Gusev crater from the alpha particle X-ray spectrometer, Science 305, 829–32, 2004.CrossRefGoogle ScholarPubMed
Gellert, R., Rieder, R., Brückner, J., et al., The Alpha Particle X-Ray Spectrometer (APXS): results from Gusev crater and calibration report, J. Geophys. Res. – Planets 111, E02S05, doi:10.1029/2005JE002555, 2006.CrossRefGoogle Scholar
Gellert, R., Rieder, R., Anderson, R. C., et al., In-situ chemistry along the traverse of Opportunity at Meridiani Planum: sulfate rich outcrops, iron rich spherules, global soils and various erratics, J. Geophys. Res. submitted, 2008.Google Scholar
GEOROC, Geochemistry of Rocks of the Oceans and Continents – Database, Max-Planck-Institut fuer Chemie, Mainz, Germany, URL: http://georoc.mpch-mainz.gwdg.de/georoc/.
Golombek, M. P., Anderson, R. C., Barnes, J. R., et al., Overview of the Mars Pathfinder mission: launch through landing, surface operations, data sets, and science results, J. Geophys. Res. 104, 8523–53, 1999.CrossRefGoogle Scholar
Golombek, M. P., Crumpler, L. S., Grant, J. A., et al., Geology of the Gusev cratered plains from the Spirit rover transverse, J. Geophys. Res. – Planets 111, E02S07, doi:10.1029/2005JE002503, 2006.CrossRefGoogle Scholar
Grotzinger, J. P., Arvidson, R. E., Bell, J. F. III, et al., Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars, Earth Planet. Sci. Lett. 240, 11–72, doi:10.1016/j.epsl.2005.09.039, 2005.CrossRefGoogle Scholar
Halliday, A. N., Wänke, H., Birk, J. L., and Clayton, R. N., The accretion, composition, and early differentiation of Mars, Space Sci. Rev. 96, 197–230, 2001.CrossRefGoogle Scholar
Harrison, T. M. and Watson, E. B., The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations, Geochim. Cosmochim. Acta 48, 1467–77, 1984.CrossRefGoogle Scholar
Hartmann, W. K. and Neukum, G., Cratering chronology and the evolution of Mars, Space Sci. Rev. 96, 165–94, 2001.CrossRefGoogle Scholar
Haskin, L. A., Wang, A., Jolliff, B. L., et al., Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater, Nature 436, 66–9, doi:10.1038/nature03640, 2005.CrossRefGoogle ScholarPubMed
Herkenhoff, K. E., Squyres, S. W., Arvidson, R., et al., Evidence from Opportunity's microscopic imager for water on Meridiani Planum, Science 306, 1727–30, 2004.CrossRefGoogle ScholarPubMed
Jagoutz, E., Chronology of SNC meteorites, Space Sci. Rev. 56, 13–22, 1991.CrossRefGoogle Scholar
Klingelhöfer, G., Morris, R. V., Bernhardt, B., et al., Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer, Science 306, 1740–5, 2004.CrossRefGoogle ScholarPubMed
Lodders, K., A survey of shergottite, nakhlite and chassigny meteorites whole-rock compositions, Meteorit. Planet. Sci. 33, A183–90, 1998.CrossRefGoogle Scholar
Lodders, K. and Fegley, B. Jr., An oxygen isotope model for the composition of Mars, Icarus 126, 373–94, 1997.CrossRefGoogle Scholar
Longhi, J., E. Knittle, J. R. Holloway, and H. Wänke, The bulk composition, mineralogy and internal structure of Mars. In Mars (ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.), Tucson: The University of Arizona Press, pp. 184–208, 1992.Google Scholar
McLennan, S. M., Crustal heat production and the thermal evolution of Mars, Lunar Planet. Sci. XXXII, Houston: Lunar and Planetary Institute, Abstract #1349 (CD-ROM), 2001
McLennan, S. M., Composition and chemical evolution of the martian crust and mantle: integrating the data from missions and meteorites, 6th Int. Conf. Mars 2003, Houston, TX: Lunar and Planetary Institute, Abstract #3099, 2003.
McSween, H. Y., Arvidson, R. E., Bell, J. F. III, et al., Basaltic rocks analyzed by the Spirit Rover in Gusev crater, Science 305, 842–5, 2004.CrossRefGoogle ScholarPubMed
McSween, H. Y., Wyatt, M. B., Gellert, R., et al., Characterization and petrologic interpretation of olivine-rich basalts at Gusev crater, Mars, J. Geophys. Res. – Planets 111, E02S10, doi:10.1029/2005JE002477, 2006a.CrossRefGoogle Scholar
McSween, H. Y., Ruff, S. W., Morris, R. V., et al. Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars, J. Geophys. Res. 111, E09S91, doi:10.1029/2006JE002698, 2006b.CrossRefGoogle Scholar
Meyer, C., The Mars Meteorite Compendium, Astromaterials Research & Exploration Science (ARES), (JSC #27672 Revision C), Houston, Texas: Lyndon B. Johnson Space Center, URL: www-curator.jsc.nasa.gov/antmet/mmc, 2006.Google Scholar
Ming, D. W., Mittlefehldt, D. W., Morris, R. V., et al., Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars, J. Geophys. Res. 111, E02S12, doi:10.1029/2005JE002560, 2006.CrossRefGoogle Scholar
Morgan, J. W. and Anders, E., Chemical composition of Mars, Geochim. Cosmochim. Acta 43, 1601–10, 1979.CrossRefGoogle Scholar
Morris, R. V., Klingelhöfer, G., Bernhardt, B., et al., Mineralogy at Gusev crater from the Mössbauer Spectrometer on the Spirit Rover, Science 305, 833–6, 2004.CrossRefGoogle ScholarPubMed
Morris, R. V., Klingelhöfer, G., Schröder, C., et al., Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills, J. Geophys. Res. 111, E02S13, doi:10.1029/2005JE002584, 2006.CrossRefGoogle Scholar
Nimmo, F. and Stevenson, D. J., Estimates of Martian crustal thickness from viscous relaxation of topography, J. Geophys. Res. 106, 5085–98, 2001.CrossRefGoogle Scholar
Palme, H. and Beer, H., Abundances of the elements in the solar system, Landolt-Börnstein, Group VI: Astronomy and Astrophysics, New Series VI/3a, Berlin: Springer Verlag, pp. 196–221, 1993.Google Scholar
Rieder, R., Wänke, H., Economou, T., and Turkevich, A., Determination of the chemical composition of Martian soil and rocks: the alpha proton X ray spectrometer, J. Geophys. Res. – Planets 102(E2), 4027–44, 1997a.CrossRefGoogle Scholar
Rieder, R., Economou, T., Wänke, H., et al., The chemical composition of Martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: preliminary results from the X-ray mode, Science 278, 1771–4, 1997b.CrossRefGoogle Scholar
Rieder, R., Gellert, R., Brückner, J., et al., The new Athena alpha particle X-ray spectrometer for the Mars Exploration Rovers, J. Geophys. Res. 108(E12), 8066, doi:10.1029/2003JE002150, 2003.CrossRefGoogle Scholar
Rieder, R., Gellert, R., Anderson, R. C., et al., Chemistry of rocks and soils at Meridiani Planum from the alpha particle X-ray spectrometer, Science 306, 1746–9, 2004.CrossRefGoogle ScholarPubMed
Schröder, C., Gellert, R., Jolliff, B. L., et al., A stony meteorite discovered by the Mars Exploration Rover Opportunity on Meridiani Planum, Mars, Meteorit. Planet. Sci. 41, 5285, 2006.Google Scholar
Soderblom, L. A., Anderson, R. C., and Arvidson, R. E., Soils of Eagle crater and Meridiani Planum at the Opportunity Rover landing site, Science 306, 1723–6, 2004.CrossRefGoogle ScholarPubMed
Squyres, S. W., Arvidson, E., Baumgartner, E. T., et al., The Athena Mars Rover science investigation, J. Geophys. Res. 108(E12), 8062, doi:10.1029/2003JE002121, 2003.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Bell, J. F. III, et al., The Spirit Rover's Athena Science Investigation at Gusev crater, Mars, Science 305, 794–9, 2004a.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Bell, J. F. III, et al., The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars, Science 306, 1698–703, 2004b.CrossRefGoogle Scholar
Squyres, S. W., Grotzinger, J. P., Arvidson, R. E., et al., In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars, Science 306, 1709–14, 2004c.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Blaney, D. L., et al., Rocks of the Columbia Hills, J. Geophys. Res. – Planets 111, E02S11, doi:10.1029/2005JE002562, 2006a.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Bollen, D., et al., Overview of the Opportunity Mars Exploration Rover Mission to Meridiani Planum: Eagle crater to Purgatory Ripple, J. Geophys. Res. 111, E12S12, doi:10.1029/2006JE002771, 2006b.CrossRefGoogle Scholar
Surkov, Yu. A., Barsukov, V. L., Moskaleva, L. P., et al., Determination of the elemental composition of martian rocks from Phobos 2, Nature 341, 595–8, 1989.CrossRefGoogle Scholar
Surkov, Yu. A., Moskaleva, L. P., Zolotov, M. Yu., et al., Phobos-2 data on Martian surface geochemistry, Geochem. Int. 31, 50–8, 1994.Google Scholar
Taylor, G. J., L. M. V. Martel, and W. V. Boynton, Mapping Mars geochemically, Lunar Planet. Sci. XXXVIII, Houston: Lunar and Planetary Institute, Abstract #1981 (CD-ROM), 2006.
Taylor, S. R. and McLennan, S. M., The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks, Philos. Trans. R. Soc. Lond. A 301, 381–99, 1981.CrossRefGoogle Scholar
Taylor, S. R. and McLennan, S. M., The geochemical evolution of the continental crust, Rev. Geophys. 33, 241–65, 1995.CrossRefGoogle Scholar
Tollari, N., Toplis, M. J., and Barnes, S.-J., Predicting phosphate saturation in silicate magmas: an experimental study of the effects of melt composition and temperature, Geochim. Cosmochim. Acta 70, 1518–36, doi:10.1016/j.gca.2005.11.024, 2006.CrossRefGoogle Scholar
Toulmin, P. III, Rose, H. J. Jr., Christian, R. P., et al., Geochemical and mineralogical interpretation of the Viking inorganic chemical results, J. Geophys. Res. 82, 4625–34, 1977.CrossRefGoogle Scholar
Trombka, J. I., Evans, L. G., Starr, R., et al., Analysis of the Phobos mission gamma-ray spectra from Mars, Proc. Lunar Planet. Sci. XXII, Houston: Lunar and Planetary Institute, pp. 23–9, 1992.Google Scholar
Wang, A., Haskin, L. A., Squyres, S. W., et al., Sulfate deposition in subsurface regolith in Gusev crater, Mars, J. Geophys. Res. 111, E02S17, doi:10.1029/2005JE002513, 2006.Google Scholar
Wänke, H. and Dreibus, G., Chemical composition and accretion history of terrestrial planets, Philos. Trans. R. Soc. Lond. A 325, 545–57, 1988.CrossRefGoogle Scholar
Wänke, H. and Dreibus, G., Chemistry and accretion history of Mars, Philos. Trans. R. Soc. Lond. A 349, 285–93, 1994.CrossRefGoogle Scholar
Wänke, H., Brückner, J., Dreibus, G., Rieder, R., and Ryabchikov, I., Chemical composition of rocks and soils at the Pathfinder site, Space Sci. Rev. 96, 317–30, 2001.CrossRefGoogle Scholar
Wasson, J. T. and Kallemeyn, G. W., The IAB iron-meteorite complex: a group, five subgroups, numerous grouplets, closely related, mainly formed by crystal segregation in rapidly cooling melts. Geochim. Cosmochim. Acta 66, 2445–73, 2002.CrossRefGoogle Scholar
Wedepohl, K. H., The composition of the continental crust, Geochim. Cosmochim. Acta 59, 1217–32, 1995.CrossRefGoogle Scholar
Wieczorek, M. A. and M. T. Zuber, The thickness of the Martian crust as inferred from geoid-to-topography ratios, Lunar Planet. Sci. XXXIII, Houston: Lunar and Planetary Institute, Abstract #1390 (CD-ROM), 2002.
Yen, A. S., Gellert, R., Schröder, C., et al., An integrated view of the chemistry and mineralogy of martian soils, Nature 436, 49–54, doi:10.1038/nature03637, 2005.CrossRefGoogle ScholarPubMed
Zipfel, J., Anderson, R., Brückner, J., et al., APXS analyses of bounce rock: the first shergottite on Mars, Meteorit. Planet. Sci. 39 (Suppl. S), A118–A118, 2004.Google Scholar
Zuber, M. T., Solomon, S. C., Phillips, R. J., et al., Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity, Science 287, 1788–93, 2000.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Mars Exploration Rovers: chemical composition by the APXS
    • By J. Brückner, Geochemistry Department, Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany, G. Dreibus, Cosmochemistry Deparment, Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany, R. Gellert, Department of Physics, University of Guelph Guelph, ON N1G 2W1, Canada, S. W. Squyres, Department of Astronomy, Cornell University, 428 Space Sciences Building, Ithaca, NY 14853, USA, H. Wänke, Abteilung Kosmochemie Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany, A. Yen, JPL/Caltech 4800 Oak Grove Road M/S 183-501 Pasadena, CA 91109-8099, USA, J. Zipfel, Forschungsinstitut und Naturmuseum Senckenberg Frankfurt/Main, D-60325, Germany
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Mars Exploration Rovers: chemical composition by the APXS
    • By J. Brückner, Geochemistry Department, Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany, G. Dreibus, Cosmochemistry Deparment, Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany, R. Gellert, Department of Physics, University of Guelph Guelph, ON N1G 2W1, Canada, S. W. Squyres, Department of Astronomy, Cornell University, 428 Space Sciences Building, Ithaca, NY 14853, USA, H. Wänke, Abteilung Kosmochemie Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany, A. Yen, JPL/Caltech 4800 Oak Grove Road M/S 183-501 Pasadena, CA 91109-8099, USA, J. Zipfel, Forschungsinstitut und Naturmuseum Senckenberg Frankfurt/Main, D-60325, Germany
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Mars Exploration Rovers: chemical composition by the APXS
    • By J. Brückner, Geochemistry Department, Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany, G. Dreibus, Cosmochemistry Deparment, Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany, R. Gellert, Department of Physics, University of Guelph Guelph, ON N1G 2W1, Canada, S. W. Squyres, Department of Astronomy, Cornell University, 428 Space Sciences Building, Ithaca, NY 14853, USA, H. Wänke, Abteilung Kosmochemie Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany, A. Yen, JPL/Caltech 4800 Oak Grove Road M/S 183-501 Pasadena, CA 91109-8099, USA, J. Zipfel, Forschungsinstitut und Naturmuseum Senckenberg Frankfurt/Main, D-60325, Germany
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.005
Available formats
×