Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T13:46:02.363Z Has data issue: false hasContentIssue false

Section IV - Medical Devices: Other Considerations

Published online by Cambridge University Press:  05 May 2017

Tim B. Hunter
Affiliation:
University of Arizona, College of Medicine
Mihra S. Taljanovic
Affiliation:
University of Arizona, College of Medicine
Jason R. Wild
Affiliation:
University of Arizona, College of Medicine
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliography

Alvarez, R E, Macovski, A. Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol 1976; 21(5): 733744.Google Scholar
Anderson, H, Toms, A P, Cahir, J G, et al. Grading the severity of soft tissue changes associated with metal-on-metal hip replacements: reliability of an MR grading system. Skeletal Radiol 2011; 40(3): 303307.CrossRefGoogle ScholarPubMed
Arena, L, Morehouse, H T, Safir, J. MR imaging artifacts that simulate disease: how to recognize and eliminate them. Radiographics 1995; 15(6): 13731394.CrossRefGoogle Scholar
Bamberg, F, Dierks, A, Nikolaou, K, et al. Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol 2011; 21(7): 14241429.Google Scholar
Beltran, L S, Bencardino, J T, Steinbach, L S. Postoperative MRI of the shoulder. J Magn Reson Imaging, 2014; 40(6): 12801297.Google Scholar
Bestic, J M, Berquist, T H. Current concepts in hip arthroplasty imaging: metal-on-metal prostheses, their complications, and imaging strategies. Semin Roentgenol 2013; 48(2): 178186.CrossRefGoogle ScholarPubMed
Biswas, D, Bible, J E, Bohan, M, et al. Radiation exposure from musculoskeletal computerized tomographic scans. J Bone Joint Surg Am 2009; 91(8): 18821889.Google Scholar
Boll, D T, Patil, N A, Paulson, E K, et al. Renal stone assessment with dual-energy multidetector CT and advanced postprocessing techniques: improved characterization of renal stone composition – pilot study. Radiology 2009; 250(3): 813820.Google Scholar
Breger, R K, Czervionke, L F, Kass, E G, et al. Truncation artifact in MR images of the intervertebral disk. AJNR Am J Neuroradiol 1988; 9(5): 825828.Google Scholar
Bronskill, M J, McVeigh, E R, Kucharczyk, W, Henkelman, R M. Syrinx-like artifacts on MR images of the spinal cord. Radiology 1988; 166(2): 485488.Google Scholar
Buckwalter, K A. Optimizing imaging techniques in the postoperative patient. Semin Musculoskelet Radiol 2007; 11(3): 261272.CrossRefGoogle ScholarPubMed
Buckwalter, K A, Parr, J A, Choplin, R H, Capello, W N. Multichannel CT imaging of orthopedic hardware and implants. Semin Musculoskelet Radiol 2006; 10(1): 8697.CrossRefGoogle ScholarPubMed
Buckwalter, K A, Lin, C, Ford, J M. Managing postoperative artifacts on computed tomography and magnetic resonance imaging. Semin Musculoskelet Radiol 2011; 15(4): 309319.Google Scholar
Calhoun, PS, Kuszyk, BS, Heath, DG, Carley, JC, Fishman, EK. Three-dimensional volume rendering of spiral CT data: theory and method. Radiographics 1999; 19(3): 745764.Google Scholar
Carl, M, Koch, K, Du, J. MR imaging near metal with undersampled 3D radial UTE-MAVRIC sequences. Magn Reson Med 2013; 69(1): 2736.CrossRefGoogle ScholarPubMed
Chen, Z, Pandit, H, Taylor, A, et al. Metal-on-metal hip resurfacings – a radiological perspective. Eur Radiol 2011; 21(3): 485491.CrossRefGoogle ScholarPubMed
Chiang, P P, Burke, D W, Freiberg, A A, Rubash, H E. Osteolysis of the pelvis: evaluation and treatment. Clin Orthop Relat Res 2003; 417: 164174.CrossRefGoogle Scholar
Chiro, G D, Brooks, R A, Kessler, R M, et al. Tissue signatures with dual-energy computed tomography. Radiology 1979; 131(2): 521523.Google Scholar
Choi, S-J, Koch, K M, Hargreaves, B A, Stevens, K J, Gold, G E. Metal artifact reduction with MAVRIC SL at 3-T MRI in patients with hip arthroplasty. AJR Am J Roentgenol 2015; 204: 140147.CrossRefGoogle ScholarPubMed
Clarke, H D, Math, K R, Scuderi, G R. Polyethylene post failure in posterior stabilized total knee arthroplasty. J Arthroplasty 2004; 19(5): 652657.CrossRefGoogle ScholarPubMed
Claus, A M, Totterman, S M, Sychterz, C J, et al. Computed tomography to assess pelvic lysis after total hip replacement. Clin Orthop Relat Res 2004; 422: 167174.Google Scholar
Clayton, R A, Beggs, I, Salter, D M, et al. Inflammatory pseudotumor associated with femoral nerve palsy following metal-on-metal resurfacing of the hip. A case report. J Bone Joint Surg Am 2008; 90(9): 19881993.Google Scholar
Coupal, T M, Mallinson, P I, McLaughlin, P, et al. Peering through the glare: using dual-energy CT to overcome the problem of metal artefacts in bone radiology. Skeletal Radiol 2014; 43(5): 567575.Google Scholar
Czervionke, L F, Czervionke, J M, Daniels, D L, Haughton, V M. Characteristic features of MR truncation artifacts. AJR Am J Roentgenol 1988; 151(6): 12191228.Google Scholar
De Haan, R, Campbell, P A, Su, E P, De Smet, K A. Revision of metal-on-metal resurfacing arthroplasty of the hip: the influence of malpositioning of the components. J Bone Joint Surg Br 2008; 90(9): 11581163.Google Scholar
den Harder, J C, van Yperen, G H, Blume, U A, Bos, C. Off-resonance suppression for multispectral MR imaging near metallic implants. Magn Reson Med 2015; 73(1): 233243.CrossRefGoogle ScholarPubMed
Farber, G L, Place, H M, Mazur, R A, Jones, D E, Damiano, T R. Accuracy of pedicle screw placement in lumbar fusions by plain radiographs and computed tomography. Spine (Phila Pa 1976) 1995; 20(13): 14941499.Google Scholar
Fayad, L M, Patra, A, Fishman, E K. Value of 3D CT in defining skeletal complications of orthopedic hardware in the postoperative patient. AJR Am J Roentgenol 2009; 193(4): 11551163.Google Scholar
Flohr, TG, Stierstorfer, K, Ulzheimer, S, et al. Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot. Med Phys 2005; 32(8): 25362547.CrossRefGoogle ScholarPubMed
Glyn-Jones, S, Pandit, H, Kwon, Y M, et al. Risk factors for inflammatory pseudotumour formation following hip resurfacing. J Bone Joint Surg Br 2009; 91(12): 15661574.CrossRefGoogle ScholarPubMed
Grammatopoulos, G, Pandit, H, Oxford Hip and Knee Group, Murray, D W, Gill, H S. The relationship between head-neck ratio and pseudotumour formation in metal-on-metal resurfacing arthroplasty of the hip. J Bone Joint Surg Br 2010; 92(11): 15271534.Google Scholar
Grigoryan, M, Lynch, J A, Fierlinger, AL, et al. Quantitative and qualitative assessment of closed fracture healing using computed tomography and conventional radiography. Acad Radiol 2003; 10(11): 12671273.Google Scholar
Hargreaves, B A, Worters, P W, Pauly, K B, et al. Metal-induced artifacts in MRI. AJR Am J Roentgenol 2011; 197(3): 547555.Google Scholar
Hayter, C L, Gold, S L, Koff, M F, et al. MRI findings in painful metal-on-metal hip arthroplasty. AJR Am J Roentgenol 2012; 199(4): 884893.Google Scholar
Hyde, J S, Jesmanowicz, A, Grist, T M, Froncisz, W, Kneeland, J B. Quadrature detection surface coil. Magn Reson Med 1987; 4(2): 179184.Google Scholar
Johnson, T R, Krauss, B, Sedlmair, M, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol 2007; 17(6): 15101517.CrossRefGoogle ScholarPubMed
Koch, K M, Lorbiecki, J E, Hinks, R S, King, K F. A multispectral three-dimensional acquisition technique for imaging near metal implants. Magn Reson Med 2009; 61(2): 381390.CrossRefGoogle ScholarPubMed
Krestan, CR, Noske, H, Vasilevska, V, et al. MDCT versus digital radiography in the evaluation of bone healing in orthopedic patients. AJR Am J Roentgenol 2006; 186(6): 17541760.CrossRefGoogle ScholarPubMed
Kwon, Y M, Ostlere, S J, McLardy-Smith, P, et al. “Asymptomatic” pseudotumors after metal-on-metal hip resurfacing arthroplasty: prevalence and metal ion study. J Arthroplasty 2011; 26(4): 511518.CrossRefGoogle ScholarPubMed
Laine, T, Makitalo, K, Schelenza, D, et al. Accuracy of pedicle screw insertion: a prospective CT study in 30 low back patients. Eur Spine J 1997; 6(6): 402405.CrossRefGoogle ScholarPubMed
Larsen, D W, Teitelbaum, G P, Norman, D. Cerebrospinal fluid flow artifact. A possible pitfall on fast-spin-echo MR imaging of the spine simulating intradural pathology. Clin Imaging 1996; 20(2): 140142.Google Scholar
Lee, Y H, Park, K K, Song, H T, Kim, S, Suh, J S. Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software. Eur Radiol 2012; 22(6): 13311340.CrossRefGoogle ScholarPubMed
Levy, L M, Di Chiro, G, Brooks, R A, et al. Spinal cord artifacts from truncation errors during MR imaging. Radiology 1988; 166(2): 479483.Google Scholar
Li, H, Yu, L, Liu, X, McCollough, C H. Metal artifact suppression from reformatted projections in multi-slice helical CT using dual-front active contours. Conf Proc IEEE Eng Med Biol Soc, 2009. 2009: 993996.Google Scholar
Liebl, H, Heilmeier, U, Lee, S, et al. In vitro assessment of knee MRI in the presence of metal implants comparing MAVRIC-SL and conventional fast spin echo sequences at 1.5 and 3 T field strength. J Magn Reson Imaging, 2015; 41(5): 12911299.Google Scholar
Lonstein, J E, Denis, F, Perra, J H, et al. Complications associated with pedicle screws. J Bone Joint Surg Am 1999; 81(11): 15191528.Google Scholar
Lu, W, Pauly, K B, Gold, G E, Pauly, J M, Hargreaves, B A. SEMAC: Slice Encoding for Metal Artifact Correction in MRI. Magn Reson Med 2009; 62(1): 6676.Google Scholar
Mahendra, G, Pandit, H, Kliskey, K, et al. Necrotic and inflammatory changes in metal-on-metal resurfacing hip arthroplasties. Acta Orthop 2009; 80(6): 653659.CrossRefGoogle ScholarPubMed
Meinel, F G, Bischoff, B, Zhang, Q, et al. Metal artifact reduction by dual-energy computed tomography using energetic extrapolation: a systematically optimized protocol. Invest Radiol 2012; 47(7): 406414.CrossRefGoogle ScholarPubMed
Mitchell, D G. MRI principles. Philadelphia, PA: Saunders, 1999.Google Scholar
Morelli, J N, Runge, V M, Ai, F, et al. An image-based approach to understanding the physics of MR artifacts. Radiographics 2011; 31(3): 849866.Google Scholar
Naudie, D D, Rorabeck, C H. Sources of osteolysis around total knee arthroplasty: wear of the bearing surface. Instr Course Lect 2004; 53: 251259.Google ScholarPubMed
Nickoloff, E L, Alderson, P O. Radiation exposures to patients from CT: reality, public perception, and policy. AJR Am J Roentgenol 2001; 177(2): 285287.Google Scholar
Nicolaou, S, Yong-Hing, C J, Galea-Soler, S, et al. Dual-energy CT as a potential new diagnostic tool in the management of gout in the acute setting. AJR Am J Roentgenol 2010; 194(4): 10721078.CrossRefGoogle ScholarPubMed
Ohashi, K, El-Khoury, G Y. Musculoskeletal CT: recent advances and current clinical applications. Radiol Clin North Am 2009; 47(3): 387409.Google Scholar
Ohashi, K, El-Khoury, G Y, Bennett, D L, Restrepo, J M, Berbaum, K S. Orthopedic hardware complications diagnosed with multi-detector row CT. Radiology 2005; 237(2): 570577.CrossRefGoogle ScholarPubMed
Ostlere, S. How to image metal-on-metal prostheses and their complications. AJR Am J Roentgenol 2011; 197(3): 558567.Google Scholar
Pandit, H, Glyn-Jones, S, McLardy-Smith, P, et al. Pseudotumours associated with metal-on-metal hip resurfacings. J Bone Joint Surg Br 2008; 90(7): 847851.Google Scholar
Peh, W C, Chan, J H. Artifacts in musculoskeletal magnetic resonance imaging: identification and correction. Skeletal Radiol 2001; 30(4): 179191.Google Scholar
Pessis, E, Campagna, R, Sverzut, J M, et al. Virtual monochromatic spectral imaging with fast kilovoltage switching: reduction of metal artifacts at CT. Radiographics 2013; 33(2): 573583.Google Scholar
Potter, H G, Nestor, B J, Sofka, C M, et al. Magnetic resonance imaging after total hip arthroplasty: evaluation of periprosthetic soft tissue. J Bone Joint Surg Am, 2004; 86A(9): 19471954.Google Scholar
Quint, D J, Patel, S C, Sanders, W O, Hearshon, D O, Boulos, R S. Importance of absence of CSF pulsation artifacts in the MR detection of significant myelographic block at 1.5 T. AJNR Am J Neuroradiol 1989; 10(5): 10891095.Google Scholar
Raphael, B, Haims, A H, Wu, J S, et al. MRI comparison of periprosthetic structures around zirconium knee prostheses and cobalt chrome prostheses. AJR Am J Roentgenol 2006; 186(6): 17711777.Google Scholar
Rubin, J B, Wright, A, Enzmann, D R. Lumbar spine: motion compensation for cerebrospinal fluid on MR imaging. Radiology 1988; 167(1): 225231.Google Scholar
Singh, D R, Chin, M S, Peh, W C. Artifacts in musculoskeletal MR imaging. Semin Musculoskelet Radiol 2014; 18(1): 1222.Google Scholar
Sochart, D H, Porter, M L. The long-term results of Charnley low-friction arthroplasty in young patients who have congenital dislocation, degenerative osteoarthrosis, or rheumatoid arthritis. J Bone Joint Surg Am 1997; 79(11): 15991617.Google Scholar
Sofka, C M, Potter, H G, Figgie, M, Laskin, R. Magnetic resonance imaging of total knee arthroplasty. Clin Orthop Relat Res 2003; (406): 129135.Google Scholar
Sutter, R, Ulbrich, E J, Jellus, V, Nittka, M, Pfirrmann, C W. Reduction of metal artifacts in patients with total hip arthroplasty with slice-encoding metal artifact correction and view-angle tilting MR imaging. Radiology 2012; 265(1): 204214.Google Scholar
Taber, K H, Herrick, R C, Weathers, S W, et al. Pitfalls and artifacts encountered in clinical MR imaging of the spine. Radiographics 1998; 18(6): 14991521.CrossRefGoogle ScholarPubMed
Takahashi, N, Hartman, R P, Vrtiska, T J, et al. Dual-energy CT iodine-subtraction virtual unenhanced technique to detect urinary stones in an iodine-filled collecting system: a phantom study. AJR Am J Roentgenol 2008; 190(5): 11691173.Google Scholar
Talbot, B S, Weinberg, E P. MR imaging with metal-suppression sequences for evaluation of total joint arthroplasty. Radiographics 2016; 36: 209225.CrossRefGoogle ScholarPubMed
Taljanovic, M S, Jones, M D, Hunter, T B, et al. Joint arthroplasties and prostheses. Radiographics 2003; 23(5): 12951314.Google Scholar
Turner, D A, Rapoport, M I, Erwin, W D, McGould, M, Silvers, R I. Truncation artifact: a potential pitfall in MR imaging of the menisci of the knee. Radiology 1991; 179(3): 629633.Google Scholar
Watzke, O, Kalender, W A. A pragmatic approach to metal artifact reduction in CT: merging of metal artifact reduced images. Eur Radiol 2004; 14(5): 849856.Google Scholar
White, L M, Buckwalter, K A. Technical considerations: CT and MR imaging in the postoperative orthopedic patient. Semin Musculoskelet Radiol 2002; 6(1): 517.Google Scholar
Wiles, P. The surgery of the osteoarthritic hip. Br J Surg 1958; 45(193): 488497.Google Scholar
Wood, M L, Henkelman, R M. MR image artifacts from periodic motion. Med Phys 1985; 12(2): 143151.Google Scholar
Yu, L, Leng, S, McCollough, C H. Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol 2012; 199(5 Suppl): S9S15.CrossRefGoogle ScholarPubMed
Zhuo, J, Gullapalli, R P. AAPM/RSNA physics tutorial for residents: MR artifacts, safety, and quality control. Radiographics 2006; 26(1): 275297.Google Scholar

Bibliography

Agrawal, K L, Mittal, B R, Bhattacharya, A, Khandelwal, N, Prabhakar, S. Crossed cerebellar diaschisis on F-18 FDG PET/CT. Indian J Nucl Med 2011; 26(2): 102103.Google Scholar
Bruyant, P P, Sau, J, Mallet, J-J. Streak artifact reduction in filtered backprojection using a level line-based interpretation model. J Nucl Med 2000; 41: 19131919.Google Scholar
Gentili, A, Miron, S D, Adler, L P. Review of some common artifacts in nuclear medicine. Clin Nucl Med 1994; 19(2): 138143.Google Scholar
Lyra, M, Ploussi, A. Filtering in SPECT image reconstruction. Int J Biomed Imag 2011; Article ID 693795, 14 pages.Google Scholar
Mainor, L. Artifact in nuclear cardiology. PDF presentation (2009) available for download from Society of Nuclear Medicine.Google Scholar
Mettler, F A, Guiberteau, M J. Essentials of Nuclear Medicine Imaging. Philadelphia, PA: Saunders, 2012.Google Scholar
Patton, D D. Nuclear medicine imaging: medical devices and artifacts. In: Hunter, T B, Bragg, D G, eds. Radiologic Guide to Medical Devices and Foreign Bodies. St Louis, MO: Mosby–Year Book, 1994; 494523.Google Scholar
Ryo, U Y, Alavi, A, Collier, B D, Bekerman, C, Pinsky, S M. Atlas of Nuclear Medicine Artifacts and Variants. Ann Arbor, MI: University of Michigan, Year Book Medical Publishers 1990.Google Scholar
Zanzonico, P. Routine qualilty control of clinical nuclear medicine instrumentation: a brief review. J Nucl Med 2008; 49(7): 11141131.CrossRefGoogle Scholar

Bibliography and Useful Links

Ashby, B S, Hunter-Craig, I D. Foreign-body perforations of the gut. Br J Surg 1967; 54: 382384.Google Scholar
Balch, C M, Silver, D. Foreign bodies in the appendix. Arch Surg 1971; 102: 1420.Google Scholar
Barone, J E, Sohn, N, Nelson, T F. Perforations and foreign bodies of the rectum: report of 28 cases. Ann Surg 1976; 184: 601604.CrossRefGoogle ScholarPubMed
Beerman, R, Nunez, D, Wetli, C V. Radiographic evaluation of the cocaine smuggler. Gastrointest Radiol 1986; 11: 351354.Google Scholar
Behrstock, B B, Petrakis, N L. A case report: permanent subcutaneous gold acupuncture needles. West J Med 1974; 121: 140142.Google Scholar
Berger, P E, Kuhn, J P, Kuhns, L R. Computed tomography and the occult tracheobroncheal foreign body. Radiology 1980; 134: 133135.Google Scholar
Bodne, D, Quinn, S F, Cochran, C F. Imaging foreign glass and wooden bodies of the extremities with CT and MRI. J Comput Assist Tomogr 1988; 12: 608611.Google Scholar
Brown, J C, Otjen, J P, Drugas, G T. Too attractive: the growing problem of magnet ingestions in children. Pediatr Emerg Care 2013: 29(11): 11701174.Google Scholar
Bundred, N J, Blackie, R A S, Kingsnorth, A N, Eremin, O. Hidden dangers of sliced bread. Br Med J (Clin Res Ed) 1984; 288: 17231724.Google Scholar
Bunker, P G. The role of dentistry in problems of foreign bodies in the air and food passages. J Am Dent Assoc 1962; 64: 782787.Google Scholar
Busch, D B, Starling, J R. Rectal foreign bodies: case reports and a comprehensive review of the world’s literature. Surgery 1986; 100: 512519.Google Scholar
Buzzard, A J, Waxman, B P. A long standing much travelled foreign body. Med J Aust 1979; 1: 600.Google Scholar
Chaikhouni, A, Kratz, J M, Crawford, F A. Foreign bodies of the esophagus. Am Surg 1985; 51: 173179.Google Scholar
Champion, H R, Holcomb, J B, Young, L A. Injuries from explosions: physics, biophysics, pathology, and required research focus. J Trauma 2009; 66(5): 14681477; discussion 1477.Google Scholar
Classen, J N, Marten, R E, Sabagal, J. Iatrogenic lesions of the colon and rectum. South Med J 1975; 68: 14171428.Google Scholar
Crass, R A, Tranbaugh, R F, Kudsk, K A, Trundey, D D. Colorectal foreign bodies and perforations. Am J Surg 1981; 142: 8588.Google Scholar
Daffner, R H. Reviewing CT scout images: observations of an expert witness. AJR Am J Roentgenol 2015; 205(3): 589591.Google Scholar
Danielson, K S, Hunter, T B. Barium capsules. AJR Am J Roentgenol 1985; 144: 414.Google Scholar
deLacey, G, Evans, R, Sandin, B. Penetrating injuries: how easy is it to see glass (and plastic) on radiographs? Br J Radiol 1985; 58: 2730.Google Scholar
Desrentes, M. Wizardry and radiography: a clinical case. Radiology 1990; 177: 115116.Google Scholar
Dhawan, S S, Ryder, K M, Pritchard, E. Massive penny ingestion: the loot with local and systemic effects. J Emerg Med 2008; 35(1): 3337.Google Scholar
Dodd, G D III, Budzik, R F Identification of retained firearm projectiles on plain radiographs. AJR Am J Roentgenol 1990; 154: 471475.Google Scholar
Dorst, J P, Reichelderfer, T E, Sanders, R C. Radiodensity of the proposed new penny. Pediatrics 1982; 69: 224225.Google Scholar
Dula, A N, Virostko, J, Shellock, F G. Assessment of MRI issues at 7 T for 28 implants and other objects. AJR Am J Roentgenol 2014; 202: 401405.Google Scholar
Eftaiha, M, Hambrick, E, Abcarian, H. Principles of management of colorectal foreign bodies. Arch Surg 1977; 112: 691695.CrossRefGoogle ScholarPubMed
Eggli, K D, Potter, B M, Garcia, V, Altman, R P, Breckbill, D L. Delayed diagnosis of esophageal perforation by aluminum foreign bodies. Pediatr Radiol 1986; 16: 511513.Google Scholar
Eldridge, W W. Foreign bodies in the gastrointestinal tract. J Am Med Ass 1961; 178: 665666.Google Scholar
Eshed, I, Kushnir, T, Shabshin, N, Konen, E. Is magnetic resonance imaging safe for patients with retained metal fragments from combat and terrorist attacks? Acta Radiol 2010; 51(2): 170174.Google Scholar
Fornage, B D, Schemberg, F L. Sonographic diagnosis of foreign bodies of the distal extremities. AJR Am J Roentgenol 1986; 147: 567569.Google Scholar
Fuller, R C. Foreign bodies in the rectum and colon. Dis Colon Rectum 1965; 8: 123127.Google Scholar
Garner, J, Brett, S J. Mechanisms of injury by explosive devices. Anesthesiol Clin 2007; 25(1): 147160.Google Scholar
Gharib, S D, Berger, D L, Choy, G, Huck, A E. Case 21–2015: a 37-year-old American man living in Vietnam, with fever and bacteremia. N Engl J Med 2015; 373(2): 174183.Google Scholar
Gimber, L H, Melville, D M, Klauser, A S, et al. Artifacts at musculoskeletal US: resident and fellow education feature. RadioGraphics 2016; 36(2): 479480.Google Scholar
Glauten, A, Austin, J H M. Permanent subcutaneous acupuncture needles: radiographic manifestations. J Can Assoc Radiol 1988; 398: 5456.Google Scholar
Goldfrank, L R, Howland, M A, Kirstein, R H. Arsenic. In: Goldfrank, L R, Flomebraum, N E, Lewin, N A, et al., eds. Toxicologic Emergencies. East Norwalk, CT: Appleton-Century-Crofts, 1986; 609618.Google Scholar
Gooding, A W, Hardiman, T, Sumers, M, Stress, R, Graf, P, Grunfeld, C. Sonography of the hand and foot in foreign body detection. J Ultrasound Med 1987; 6: 441447.Google Scholar
Gordon, D. Non-metallic foreign bodies (letter). Br J Radiol 1985; 58: 574.Google Scholar
Gray, J R, Khalil, A, Prior, J C. Acute arsenic toxicity: an opaque poison. J Can Assoc Radiol 1989; 40: 226227.Google Scholar
Guelfguat, M, Kaplinskiy, V, Reddy, S H, DiPoce, J. Clinical guidelines for imaging and reporting ingested foreign bodies. AJR Am J Roentgenol 2014; 203: 3753.Google Scholar
Guindi, M M, Troster, M M, Valley, V M. Three cases of an unusual foreign body in small bowel. Gastrointest Radiol 1987; 12: 240242.CrossRefGoogle ScholarPubMed
Gunn, A. Intestinal perforation due to swallowed fish or meat bone. Lancet 1966; 1: 125128.Google Scholar
Heller, R M, Reichelderfer, T E, Dorst, J P, Oh, K S. The problem with the replacement of copper pennies by aluminum pennies. Pediatrics 1974; 54: 684688.Google Scholar
Hilfer, R J, Mandel, A. Acute arsenic intoxication diagnosed by roentgenograms. N Engl J Med 1962; 266: 663664.Google Scholar
Himadi, G M, Fischer, G J. Magnetic removal of foreign bodies from the upper gastrointestinal tract. Radiology 1977; 123: 226227.Google Scholar
Hollerman, J J, Fackler, M L. Bullet, pellets, and wound ballistics. In: Hunter, T B, Bragg, D G, eds. Radiologic Guide to Medical Devices and Foreign Bodies. St Louis, MO: Mosby–Year Book, 1994.Google Scholar
Horrocks, C L. Blast injuries: biophysics, pathophysiology and management principles. JR Army Med Corps. 2001; 147(1): 2840.Google Scholar
Horton, L K, Jacobson, J A, Powell, A, Fessell, D P, Hayes, C W. Sonography and radiography of soft-tissue foreign bodies. AJR Am J Roentgenol 2001; 176: 11551159.Google Scholar
Humphry, A, Holland, W G. Unsuspected esophageal foreign bodies. J Can Assoc Radiol 1981; 32: 1720.Google ScholarPubMed
Hunter, T B. Bottle cap ingestion. AJR Am J Roentgenol 1991; 157: 411412.Google Scholar
Hunter, T B. Magnetic pull from outer space (letter). AJR Am J Roentgenol 1996; 166: 14981499.Google Scholar
Hunter, T B, Bragg, D G, eds. Radiologic Guide to Medical Devices and Foreign Bodies. St Louis, MO: Mosby–Year Book, 1994.Google Scholar
Hunter, T B, Hirai Gimber, L. Identification of retained surgical foreign objects: policy at a University Medical Center. J Am Coll Radiol 2010; 7(9): 736738.Google Scholar
Hunter, T B, Taljanovic, M S. Foreign bodies. RadioGraphics 2003; 23: 731757.Google Scholar
Ikenberry, S O, Jue, T L, Anderson, M A, et al. Management of ingested foreign bodies and food impactions. Gastrointest Endos 2011; 73(6): 10851091.Google Scholar
Imray, T J, Hiramatsu, Y. Radiographic manifestations of Japanese acupuncture. Radiology 1975; 115: 625626.Google Scholar
Jackson, C L. Foreign bodies in the esophagus. Am J Surg 1957; 93: 308312.Google Scholar
Jaffe, R B, Corneli, H M. Fluoroscopic removal of ingested alkaline batteries. Radiology 1984; 150: 585586.Google Scholar
Jamison, M H, Davis, R W W, Maclennan, I. A plastic bread-bag clip: cause of intermittent intestinal obstruction. Br J Clin Pract 1983; 37: 402403.Google Scholar
Karlsson, M K, Hasserius, R, Gerdhem, P, et al. Vertebroplasty and kyphoplasty. Acta Orthop 2005; 76: 620627.Google Scholar
Kellermann, A L, Peleg, K. Lessons from Boston. N Engl J Med 2013; 368(21): 19561957.Google Scholar
Kraker, D A. Foreign bodies in the rectum and sigmoid. Am J Surg 1935; 29: 449450.Google Scholar
Kuhns, D W, Dire, D J. Button battery ingestions. Ann Emerg Med 1989; 18: 293300.Google Scholar
Laberke, P J, Blum, S, Waelti, S, et al. Systematic evaluation of radiation dose reduction in CT studies of body packers: accuracy down to submillisievert levels. AJR Am J Roentgenol 2016; 206: 740746.Google Scholar
Lau, J T K, Ong, G B. Broken and retained rectal thermometers in infants and young children. Aust Pediatr J 1981; 17: 9394.Google Scholar
Lebowitz, R L, Vargas, B. Stones in the urinary bladder in children and young adults. AJR Am J Roentgenol 1987; 148: 491495.Google Scholar
Lotan, E, Portnoy, O, Konen, E, Simon, D, Guranda, L. The role of early postmortem CT in the evaluation of support line misplacement in patients with severe trauma. AJR Am J Roentgenol 2015; 204: 37.Google Scholar
Maddu, K K, Mittal, P, Day Arepali, C, et al. Colorectal emergencies and related complications: a comprehensive imaging review-noninfectious and noninflammatory emergencies of the colon. AJR Am J Roentgenol 2014; 203: 12171229.Google Scholar
Maglinte, D D T, Taylor, S D, Ng, A C. Gastrointestinal perforation by chicken bones. Radiology 1979; 130: 597599.Google Scholar
Maleki, M, Evans, W E. Foreign body perforation of the intestinal tract: report of 12 cases and review of the literature. Arch Surg 1970; 101: 475477.CrossRefGoogle ScholarPubMed
McCord, G S, Clouse, R E. Pill-induced esophageal strictures: clinical features and risk factors for development. Am J Med 1990; 88: 512518.Google Scholar
McPherson, R C, Karlon, M, Williams, R D. Foreign body perforation of the intestinal tract. Am J Surg 1957; 94: 564566.Google Scholar
Meyer, J E, Kopans, D B, Mueller, P R. Preoperative localization of radiopaque foreign bodies. Radiology 1982; 144: 179.Google Scholar
Morales, L, Rovida, J, Mongrad, M, Sancho, M A, Bach, A. Intraspinal migration of rectal foreign body. J Pediatr Surg 1983; 18: 634635.Google Scholar
Morris, C C. Pediatric iron poisonings in the United States. South Med J 2000; 93(4): 352358.Google Scholar
Muhletaler, C A, Gerlock, A J, Shull, H S, Adkins, R B The pill bottle dessicant: a cause of partial gastrointestinal obstruction. J Am Med Ass 1980; 242: 19211922.Google Scholar
Mustafa, B F, Samaan, M, Langmead, L, Khasraw, M. Small bowel video capsule endoscopy: an overview. Expert Rev Gastroenterol Hepatol 2013; 7(4): 323329.Google Scholar
Naidich, T P, Bartelt, D, Wheeler, PS, Stern, W Z. Metallic mercury emboli. AJR Am J Roentgenol Radium Ther Nucl Med 1973; 117: 886891.Google Scholar
Nandi, P, Ong, G B. Foreign body in the esophagus: review of 2394 cases. Br J Surg 1978; 65: 59.Google Scholar
Neumann, H, Fry, L C, Nagel, A, Neurath, M E. Wireless capsule endoscopy of the small intestine: a review and future directions. Curr Opin Gastroenterol 2014; 30(5): 463471.Google Scholar
Ngan, J H K, Fox, P J, Lai, E C S, et al. A prospective study on fish bone ingestion: experience of 358 patients. Ann Surg 1990; 211: 459462.Google Scholar
Pawa, S, Khalifa, A J, Ehrinpreis, M N, Schiffer, C A, Siddiqui, F A. Zinc toxicity from massive and prolonged coin ingestion in an adult. Am J Med Sci 2008; 335(5): 430433.Google Scholar
Peterson, J J, Bancroft, L W, Kransdorf, M J. Wooden foreign bodies: imaging appearance. AJR Am J Roentgenol 2002; 178: 557562.Google Scholar
Peterson, N, Harvey-Smith, W, Rohrmann, C A Radiographic aspects of metallic mercury embolism. AJR Am J Roentgenol 1980; 135: 10791081.Google Scholar
Poletti, P A, Canel, L, Becker, C D, et al. Screeing of illegal intracorporeal containers (“body packing”): is abdominal radiography sufficiently accurate? A comparative study with low-dose CT. Radiology 2012; 265(3): 772779.Google Scholar
Porter, K K, Woods, R W, Bailey, P D, Scott, W W, Johnson, P T. Positive control radiographs for identifying a suspected retained surgical item. J Am Coll Radiol 2015; 12: 830832.Google Scholar
Price, J, Dewar, G A, Metreweli, C. Airgun pellet appendicitis. Australas Radiol 1988; 32: 368370.Google Scholar
Proud, W G. The physical basis of explosion and blast injury process. JR Army Med Corps 2013; 159(Suppl 1): i49.Google Scholar
Pugmire, B S, Lim, R, Avery, L L. Review of ingested and aspirated foreign bodies in children and their clinical significance for radiologists. RadioGraphics 2015; 35(5): 15281538.Google Scholar
Rappaport, W, Haynes, K. The retained surgical sponge following intra-abdominal surgery. Arch Surg 1990; 125: 405407.Google Scholar
Rebell, F G. The problem of foreign bodies in the colon and rectum. Am J Surg 1948; 76: 678686.Google Scholar
Richter, R M, Littman, L. Endoscopic extraction of an unusual colonic foreign body. Gastrointest Endosc 1975; 22: 4045.Google Scholar
Rivron, R P, Jones, D R B. A hazard of modern life (letter). Lancet 1983; 2: 334.Google Scholar
Roberts, I S, Benamore, R E, Benbow, E W, et al. Post-mortem imaging as an alternative to autopsy in diagnosis of adult deaths: a validation study. Lancet 2012; 379(9811): 136142.Google Scholar
Rondonotti, E, Soncini, M, Girelli, C, et al. Small bowel capsule endoscopy in clinical practice: a multicenter 7-year survey. Eur J Gastroenterol Hepatol 2010; 22(11): 13801386.Google Scholar
Rosser, C. Foreign bodies of the rectum. Texas State J Med 1931; 27: 2324.Google Scholar
Saenz, L, Lee, H, Mottram, M. Permanent acupuncture needles. J Am Med Ass 1978; 240: 14821483.Google Scholar
Schatz, C J, Fordham, S. Acupuncture needles: a “new” foreign body in the ear. Am J Roentgenol 1976; 127: 688689.Google Scholar
Schmidt, S, Hugli, O, Rizzo, E, et al. Detection of ingested cocaine-filled packets-diagnostic value of unenhanced CT. Eur J Radiol 2008; 67(1): 133138.Google Scholar
Scholing, M, Saltzherr, T P, Fung Kon Jin, P H, et al. The value of postmortem computed tomography as an alternative for autopsy in trauma victims: a systematic review. Eur Radiol 2009; 19(10): 23332341.Google Scholar
Schwartz, G F, Polsky, H S. Ingested foreign bodies of the gastrointestinal tract. Am Surg 1976; 42: 236238.Google Scholar
Schwartz, J T, Graham, D Y. Toothpick perforation of the intestines. Ann Surg 1977; 185: 6466.Google Scholar
Segal, I, Nouri, M A, Hamilton, D G, et al. Foreign body ileitis: a case report. S Afr Med J 1980; 588: 421422.Google Scholar
Selivanov, V, Sheldon, G F, Cello, J P, Crass, R A. Management of foreign body ingestion. Ann Surg 1984; 199: 187191.Google Scholar
Shaffer, H A, Alfred, B A, deLange, E E, Meyer, G A, McIlhenny, J. Basket extraction of esophageal foreign bodies. AJR Am J Roentgenol 1986; 147: 10101013.Google Scholar
Shellock, F G, ed. Magnetic Resonance Procedures: Health Effects and Safety. Boca Raton, FL: CRC, 2001.Google Scholar
Shellock, F G, Karacozoff, A M. Detection of implants and other objects using a ferromagnetic detection system: implications for patient screening before MRI. AJR Am J Roentgenol 2013; 201: 720725.Google Scholar
Singeap, A M, Trifan, A, Cojocariu, C, Sfarti, C, Stanciu, C. Outcomes after symptomatic capsule retention in suspected small bowel obstruction. Eur J Gastroenterol Hepatol 2011; 23(10): 886890.Google Scholar
Singh, A K, Goralnick, E, Velmahos, G, et al. Radiologic freatures of injuries from the Boston Marathon bombing at three hospitals. AJR Am J Roentgenol 2014; 203: 235239.Google Scholar
Singh, A K, Ditkofsky, N G, York, J D, et al. Blast injuries: from improvised explosive device blasts to the Boston Marathon bombing. RadioGraphics 2016; 36: 295307.Google Scholar
Smith, P C, Swischuk, L E, Fagan, C V. Elusive and often unsuspected cause of stridor or pneumonia (esophageal foreign body). Am J Roentgenol Radium Ther Nucl Med 1974; 122: 8089.CrossRefGoogle ScholarPubMed
Spiegel, S M, Hyams, B B. Radiographic demonstration of a toxic agent. J Can Assoc Radiol 1984; 35: 204205.Google Scholar
Spizarny, D L, Renzi, P. Metallic mercury pulmonary emboli. J Can Assoc Radiol 1987; 38: 6061.Google Scholar
Spouge, A R, Weisbrod, G L, Herman, S J, Chamberlain, D W. Wooden foreign body in the lung parenchyma. AJR Am J Roentgenol 1990; 154: 9991001.Google Scholar
Staple, T W, McAlister, W H. Roentgenographic visualization of iron preparations in the gastrointestinal tract. Radiology 1964; 83: 10511056.Google Scholar
Studley, J G N, Linehan, I P, Ogilvie, A L, Dowling, B L. Swallowed button batteries: is there a consensus on management? Gut 1990; 31: 867870.Google Scholar
Sturdy, J H, Baird, R M, Gerein, A N. Surgical sponges: a cause of granuloma and adhesion formation. Ann Surg 1967; 165: 128134.Google Scholar
Sutton, G. Hidden dangers of sliced bread (letter). Br Med J (Clin Res Ed) 1984; 288: 1995.Google Scholar
Taljanovic, M S, Hunter, T B, Freundlich, I M. Misplaced devices in the chest, abdomen, and pelvis: part I. Semin Ultrasound CT MRI 2006a; 27: 7897.Google Scholar
Taljanovic, M S, Hunter, T B, Freundlich, I M. Misplaced devices in the chest, abdomen, and pelvis: part II. Semin Ultrasound CT MRI 2006b; 27: 98110.Google Scholar
Tandberg, D. Glass in hand and foot: will x-ray film show it? J Am Med Ass 1982; 248: 18721874.Google Scholar
Vizcarrondo, F J, Brady, P G, Nord, H J. Foreign bodies of the upper gastrointestinal tract. Gastrointest Endosc 1983; 29: 208210.Google Scholar
Volle, E, Hand, D, Berger, P, Kaufman, H J. Ingested foreign bodies: removal by magnet. Radiology 1986; 160: 407409.Google Scholar
Walter, W R, Amis, E S, Sprayregen, S, Haramati, L B. Intraoperative radiography for surgical miscounts. J Am Coll Radiol 2015; 12: 824829.Google Scholar
Webb, W A. Management of foreign bodies of the upper gastrointestinal tract: update. Gastrointest Endos 1995; 41: 3951.Google Scholar
Wenzel, V, Tuttle, R J, Zylak, C J. Intravenous self-administration of metallic mercury. Radiology 1980; 137: 313315.Google Scholar
Wilson, A J. Gunshot injuries: what does a radiologist need to know? RadioGraphics 1999; 19: 13581368.Google Scholar
Wolf, L, Geracy, K. Colonoscopic removal of balloons from the bowel. Gastrointest Endosc 1977; 24: 4144.Google Scholar
Yildiz, S Y, Kendirci, M, Akbulut, S, et al. Colorectal emergencies associated with penetrating or retained foreign bodies. World J Emerg Surg 2013; 8: 25.Google Scholar
Zelegman, B E, Feinberg, L E, Johnson, E D. A complication of cleansing enema: retained protective shield of the enema tip. Gastrointest Radiol 1986; 11: 372374.Google Scholar
Ziter, F M Intestinal perforation in adults due to ingested opaque foreign bodies. Am J Gastroenterol 1976; 68: 382385.Google Scholar

Bibliography

Amiram, D, Kimmelman, E. The FDA and Worldwide Quality System Requirements Guidebook for Medical Devices. 2nd ed. Milwaukee, WI: ASQ Quality Press, 2008.Google Scholar
Annas, G J, Elias, S. Thalidomide and the Titanic: reconstructing the technology tragedies of the twentieth century. Am J Public Health 1999; 89(1): 98101.Google Scholar
Burd, E M. Validation of laboratory-developed molecular assays for infectious diseases. Clin Microbiol Rev 2010; 23(3): 550576.Google Scholar
Criado, F J. Off-label use of devices: friend or foe? J Endovasc Ther 2006; 13(4): 505506.Google Scholar
Curfman, G D, Redberg, R F. Medical devices – balancing regulation and innovation. N Engl J Med 2011; 365(11): 975977.Google Scholar
Felten, R P, Ogdne, N R, Pena, C, et al. Food and Drug Administration medical device review process: clearance of a clot retriever for use in ischemic stroke. Stroke 2005; 36(2): 404406.Google Scholar
Holbein, M E, Berglund, J P. Understanding Food and Drug Administration regulatory requirements for an investigational device exemption for sponsor-investigators. J Investig Med 2012; 60(7): 987994.Google Scholar
Huff, M A. Medical applications of micro-electro-mechanical-systems. In: Rosen, Y, Elman, N (Eds.), Biomaterials Science: An Integrated Clinical and Engineering Approach: Boca Raton, FL: CRC Press, 2012: pp. 3084.Google Scholar
Jarow, J P, Baxley, J H. Medical devices: US medical device regulation. Urol Oncol 2015; 33(3): 128132.Google Scholar
Kaplan, A V, Baim, D S, Smith, J J, et al. Medical device development: from prototype to regulatory approval. Circulation 2004; 109(25): 30683072.Google Scholar
Kaplan, A V, Harvey, E D, Kuntz, R E, et al. Humanitarian use devices/humanitarian device exemptions in cardiovascular medicine. Circulation 2005; 112(18): 28832886.Google Scholar
Mehta, S S. Commercializing Succesful Biomedical Technologies. Cambridge: Cambridge University Press, 2008.Google Scholar
Orbach, B. What is regulation? Yale Journal on Regulation 2012; 30(1): 110.Google Scholar
Robertson, G. Crimes Against Humanity: The Struggle for Global Justice. New York, NY: The New Press, 2006.Google Scholar
Rome, B N, Kramer, D B, Kesselheim, A S. Approval of high-risk medical devices in the US: implications for clinical cardiology. Curr Cardiol Rep. 2014; 16(6): 489.Google Scholar
Saviola, J. The FDA role in medical devices clinical studies of human subjects. J Neural Eng 2005; 2: S1S4.Google Scholar
Schuh, J C. Medical device regulations and testing for toxicological pathologists. Toxicol Pathol 2008; 36(1): 6369.Google Scholar
Smith, J J. Off-label use of medical devices in radiology: regulatory standards and recent developments. J Am Coll Radiol 2010; 7(2): 115119.Google Scholar
Smith, J J, Berlin, L. Off-label use of interventional medical devices. AJR Am J Roentgenol 1999; 173(3): 539542.Google Scholar
Starnes, B W. A surgeon’s perspective regarding the regulatory, compliance, and legal issues involved with physician-modified devices. J Vasc Surg 2013; 57: 829831.Google Scholar
Sweet, B V, Schwemm, A K, Parsons, D M. Review of the processes for FDA oversight of drugs, medical devices, and combination products. J Manag Care Pharm 2011; 17(1): 4050.Google Scholar
Thomadsen, B R, Heaton, H T II, Jani, S K, et al. Off-label use of medical products in radiation therapy: summary of the report of AAPM Task Group No. 121. Med Phys 2010; 37(5): 23012309.Google Scholar
van Eck, C F, Chen, A F, Klatt, B A, D’Antonio, J, Fu, F. The classification of implants: class I, II, III. J Long Term Eff Med Implants 2009; 19(3): 185193.Google Scholar
World Health Organization. Medical Device Regulations. Global overview and guiding principles. Geneva: World Health Organization, 2003.Google Scholar
Wizemann, T, ed. Public Health Effectiveness of the FDA 510(k) Clearance Process: Measuring Postmarket Performance and Other Select Topics: Workshop Report. Washington, DC: National Academy of Sciences, 2011.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×