Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-18T22:51:34.355Z Has data issue: false hasContentIssue false

Chapter 14 - Crystallization of Proteins

Published online by Cambridge University Press:  14 June 2019

Allan S. Myerson
Affiliation:
Massachusetts Institute of Technology
Deniz Erdemir
Affiliation:
Bristol-Myers Squibb, USA
Alfred Y. Lee
Affiliation:
Merck & Co., Inc
Get access

Summary

Protein crystals are of interest for several fields of science and technology. Their formation underlies several human pathological conditions. An example is the crystallization of hemoglobin C and the polymerization of hemoglobin S that cause, respectively, the CC and sickle cell diseases (Charache et al. 1967; Hirsch et al. 1985; Eaton and Hofrichter 1990; Vekilov 2007). The formation of crystals and other protein condensed phases of the so-called crystallines in the eye lens underlies the pathology of cataract formation (Berland et al. 1992; Asherie et al. 2001). A unique example of benign protein crystallization in humans and other mammals is the formation of rhombohedral crystals of insulin in the islets of Langerhans in the pancreas. The suggested function of crystal formation is to protect the insulin from the proteases present in the islets of Langerhans and to increase the degree of conversion of the soluble proinsulin (Dodson and Steiner 1998).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, A. (2005). Nature 435(7042): 547.Google Scholar
Aber, J. E., Arnold, S., and Garetz, B. A. (2005). Phys. Rev. Lett. 94: 145503.Google Scholar
Anderson, C. O., Niesen, J. F., Blanch, H. W., and Prausnitz, J. M. (2000). Biophys. Chem. 84(2): 177–88.Google Scholar
Anderson, V. J., and Lekkerkerker, H. N. W. (2002). Nature 416: 811–15.Google Scholar
Asakura, S., and Oosawa, F. (1958). J. Polymer Sci. 33: 183–92.CrossRefGoogle Scholar
Asherie, N., Lomakin, A., and Benedek, G. B. (1996). Phys. Rev. Lett. 77(23): 4832–35.Google Scholar
Asherie, N., Pande, J., Pande, A., et al. (2001). J. Mol. Biol. 314(4): 663–69.CrossRefGoogle Scholar
Atkins, P., and DePaula, J. (2002). Physical Chemistry. New York, NY: W.H. Freeman.Google Scholar
Bacher, A., Weinkauf, S., Bachmann, L., et al. (1992). J. Mol. Biol. 225: 1065–73.CrossRefGoogle Scholar
Baker, E. N., Blundell, T. L., Cutfield, J. F., et al. (1988). Philos.Trans. R. Soc. Lond. B 319: 369456.Google Scholar
Ball, P. (2003). Nature 423: 2526.Google Scholar
Bauser, E. (1994). In Handbook of Crystal Growth (vol. 3b), Hurle, D. T. J. (ed.). Amsterdam: North Holland, pp. 879911.Google Scholar
Bergeron, L., Filobelo, L., Galkin, O., and Vekilov, P. G. (2003). Biophys. J. 85: 3935–42.Google Scholar
Bergfors, T. (ed.) (2009). Protein Crystallization (2nd edn). La Jolla, CA: International University Line.Google Scholar
Berland, C. R., Thurston, G. M., Kondo, M., et al. (1992). Proc. Natl. Acad. Sci. USA 89: 1214–18.Google Scholar
Berman, H. M., Westbrook, J., Feng, Z., et al. (2000). Nucl. Acids Res. 28(1): 235–42.Google Scholar
Berry, P. S., Rice, S. A., and Ross, J. (2000). Physical Chemistry. New York: Oxford University Press.Google Scholar
Bhamidi, V., Varanasi, S., and Schall, C. A. (2002). Crystal Growth Des. 2(5): 395400.CrossRefGoogle Scholar
Bhattacharyya, S. M., Wang, Z.-G., and Zewail, A. H. (2003). J. Phys. Chem. B 107(47): 13218–28.Google Scholar
Bliznakov, G. (1965). In Adsorption et Croissance Cristalline. Paris: Centre National de la Recherche Scientifique, pp. 291300.Google Scholar
Bonneté, F., Finet, S., and Tardieu, A. (1999). J. Crysal Growth 196: 403–14.Google Scholar
Bonnett, P. E., Carpenter, K. J., Dawson, S., and Davey, R. J. (2003). Chem. Commun. 698–99, available at https://pubs.rsc.org/en/content/articlelanding/2003/cc/b212062c#!divAbstract.Google Scholar
Brange, J. (1987). Galenics of Insulin. Berlin: Springer.Google Scholar
Braun, N., Tack, J., Bachmann, L., and Weinkauf, S. (1996). Thin Solid Films 284285: 703–7.Google Scholar
Braun, N., Tack, J., Fischer, M., et al. (2000). J.Crystal Growth 212: 270–82.Google Scholar
Bresme, F., and Wynveen, A. (2007). J. Chem. Phys. 126(4): 044501.Google Scholar
Broide, M. L., Berland, C. R., Pande, J., Ogun, O. O., and Benedek, G. B. (1991). Proc. Natl. Acad. Sci. USA 88: 5660–64.Google Scholar
Broide, M. L., Tominc, T. M., and Saxowsky, M. D. (1996). Phys. Rev. E 53(6): 6325–35.Google Scholar
Burton, W. K., Cabrera, N., and Frank, F. C. (1951). Philos. Trans. R. Soc. Lond. A 243: 299360.Google Scholar
Cabrera, N., and Vermileya, D. A. (1958). In Growth and Perfection of Crystals, Doremus, R. H., Roberts, B. W., and Turnbul, D. (eds.). New York, NY: Wiley, pp. 393408.Google Scholar
Cacioppo, E., Munson, S., and Pusey, M. L. (1991). J. Crystal Growth 110: 6671.Google Scholar
Cacioppo, E., and Pusey, M. L. (1991). J. Crystal Growth 114: 286–92.Google Scholar
Cahn, J. W., and Hilliard, J. E. (1958). J. Chem. Phys. 28(2): 258–67.Google Scholar
Carbonnaux, C., Ries-Kautt, M., and Ducruix, A. (1995). Protein Sci 4(10): 2123–28.Google Scholar
Carroll, R. J., Hammer, R. E., Chan, S. J., et al. (1988). Proc. Natl. Acad. Ssi. USA 85(23): 8943–47.Google Scholar
Carter, D. C., Lim, K., Ho, J. X., et al. (1999). J. Crystal Growth 196: 623–37.Google Scholar
Chalikian, T. V., Plum, G. E., Sarvazyan, A. P., and Breslaver, K. J. (1994). Biochemistry 33: 8629–40.Google Scholar
Chalikian, T. V., Völker, J., Srinivasan, A. R., Olson, W. K., and Breslauer, K. J. (1999). Biopolymers 50(5): 459–71.3.0.CO;2-B>CrossRefGoogle Scholar
Chao, W. C., Collins, J., Wang, S. W., et al. (2004). Conf. Proc. IEEE Eng. Med. Biol. Soc. 4: 2623–26.Google Scholar
Charache, S., Conley, C. L., Waugh, D. F., Ugoretz, R. J., and Spurrell, J. R. (1967). J. Clin. Invest. 46(11): 1795–811.CrossRefGoogle Scholar
Charron, C., Sauter, C., Zhu, D. W., et al. (2001). J. Crystal Growth 232: 376–86.Google Scholar
Chayen, N. E. (1996). Protein Eng. 9(10): 927–29.Google Scholar
Chayen, N. E. (1999). J. Crystal Growth 196: 434–41.Google Scholar
Chayen, N. E., Helliwell, J. R., and Snell, E. H. (2010). Macromolecular Crystallization and Crystal Perfection (IUCr Monographs on Crystallography 24). New York, NY: Oxford University Press.CrossRefGoogle Scholar
Chen, K., and Vekilov, P. G. (2002). Phys. Rev. E 66: 021606.Google Scholar
Chen, Q., Vekilov, P. G., Nagel, R. L., and Hirsch, R. E. (2004). Biophys. J. 86: 1702–12.CrossRefGoogle Scholar
Chernov, A. A. (1961). Sov. Phys. Uspekhi 4: 116–48.Google Scholar
Chernov, A. A. (1970). Sov. Phys. Uspekhi 101: 277328.Google Scholar
Chernov, A. A. (1984). In Crystal Growth. Berlin: Springer.Google Scholar
Chernov, A. A. (1998). Acta Crystallogr. A 54: 859–72.Google Scholar
Chernov, A. A. (1999). J. Crystal Growth 196: 524–34.Google Scholar
Chernov, A. A., and Komatsu, H. (1995a). In Science and Technology of Crystal Growth, van der Eerden, J. P. and Bruinsma, O. S. L. (eds.). Dordrecht: Kluwer Academic, pp. 329–53.Google Scholar
Chernov, A. A., and Komatsu, H. (1995b). Topics in Crystal Growth Kinetics: Science and Technology of Crystal Growth, van der Eerden, J. P. and Bruinsma, O. S. L. (eds.). Dordrecht: Kluwer Academic, pp. 6780.Google Scholar
Chernov, A. A., Rashkovich, L. N., Yamlinski, I. V., and Gvozdev, N. V. (1999). J. Phys. Condens. Matter 11: 9969–84.Google Scholar
Choudhury, N., and Pettitt, B. M. (2005a). J. Phys. Chem. B 109: 6422–29.Google Scholar
Choudhury, N., and Pettitt, B. M. (2005b). J. Am. Chem. Soc. 127(10): 3556–67.Google Scholar
Choudhury, N., and Pettitt, B. M. (2006). J. Phys. Chem. B 110(16): 8459–63.Google Scholar
Choudhury, N., and Pettitt, B. M. (2007). J. Am. Chem. Soc. 129(15): 4847–52.Google Scholar
Coen, C. J., Newman, J., Blanch, H. W., and Prausnitz, J. M. (1996). J. Colloid Interfac. Sci. 177(1): 276–79.Google Scholar
Cohen, S. L., Ferre-D’Amare, A. R., Burley, S. K., and Chait, B. T. (1995). Protein Sci. 4: 1088–99.CrossRefGoogle Scholar
Czepas, J., Devedjiev, Y., Krowarsch, D., et al. (2004). Acta Crystallogr. D 60: 275–80.Google Scholar
De Yoreo, J. J. (2001). In 13th International Conference on Crystal Growth. New York, NY: Elsevier.Google Scholar
Debenedetti, P. G. (1996). Metastable Liquids. Princeton, NJ: Princeton University Press.Google Scholar
Derewenda, Z. (2004a). Structure (Camb.) 12: 529–35.Google Scholar
Derewenda, Z. (2004b). Methods 34: 354–63.Google Scholar
Derewenda, Z. S., and Vekilov, P. G. (2006). Acta Crystallogr. D 62: 116–24.Google Scholar
Derjaguin, B. V. (1989). Theory of Stability of Colloids and Thin Films. New York, NY: Plenum Press.Google Scholar
Dixit, N. M., Kulkarni, A. M., and Zukoski, C. F. (2001). Colloids Surfaces A 190: 4760.Google Scholar
Dixit, N. M., and Zukoski, C. F. (2000). J. Colloid Interfac. Sci. 228(2): 359–71.Google Scholar
Dodson, G., and Steiner, D. (1998). Curr. Opin. Struct. Biol. 8(2): 189–94.Google Scholar
Doi, M., and Edwards, S. F. (1986). The Theory of Polymer Dynamics. Oxford: Clarendon Press.Google Scholar
Doye, J. P. K., Louis, A. A., and Vendruscolo, M. (2004). Phys. Biol. 1(1): p913.CrossRefGoogle Scholar
Doye, J. P. K., and Poon, W. C. K. (2006). Curr. Opin. Colloid Interfac. Sci. 11(1): 4046.Google Scholar
Ducruix, A., and Giege, R. (eds.) (1992). Crystallization of Nucleaic Acids and Proteins: A Practical Approach. Oxford: IRL Press.Google Scholar
Dumetz, A. C., Chockla, A. M., Kaler, E. W., and Lenhoff, A. M. (2008a). Biochim. Biophys. Acta 1784(4): 600–10.Google Scholar
Dumetz, A. C., Chockla, A. M., Kaler, E. W., and Lenhoff, A. M. (2008b). Biophys. J. 94(2): 570–83.Google Scholar
Dumetz, A. C., Snellinger-O’Brien, A. M., Kaler, E. W., and Lenhoff, A. M. (2007). Protein Sci. 16(9): 1867–77.Google Scholar
Dunitz, J. D. (1994). Science 264: 670.Google Scholar
Durbin, S. D., and Feher, G. (1996). Annu. Rev. Phys. Chem. 47: 171204.Google Scholar
Eaton, W. A., and Hofrichter, J. (1990). In Advances in Protein Chemistry (vol. 40), Anfinsen, C. B., Edsal, J. T., Richards, F. M., and Eisenberg, D. S. (eds.). San Diego, CA: Academic Press, pp. 63279.Google Scholar
Eisenberg, D., and Crothers, D. (1979). Physical Chemistry with Applications to Life Sciences. Menlo Park, CA: Benjamin/Cummins.Google Scholar
Eisenberg, D., and Kauzmann, W. (1969). The Structure and Properties of Water. Oxford: Oxford University Press.Google Scholar
Eyring, H., Lin, S. H., and Lin, S. M. (1980). Basic Chemical Kinetics. New York, NY: Wiley.Google Scholar
Feeling-Taylor, A. R., Banish, R. M., Hirsch, R. E., and Vekilov, P. G. (1999). Rev. Sci. Instr. 70(6): 2845–49.Google Scholar
Feeling-Taylor, A. R., Yau, S.-T., Petsev, D. N., et al. (2004). Biophys. J. 87(4): 2621–29.Google Scholar
Fersht, A. (1999). Structure and Mechanism in Protein Science. New York, NY: W.H. Freeman.Google Scholar
Filobelo, L. (2005). Kinetics of phase transition in protein solutions on microscopic and mesoscopic length scales. Ph.D. thesis, University of Houston, Houston, TX.Google Scholar
Filobelo, L. F., Galkin, O., and Vekilov, P. G. (2005). J. Chem. Phys. 123: 014904.CrossRefGoogle Scholar
Finkelstein, A., and Janin, J. (1989). Protein Eng. 3: 110.CrossRefGoogle Scholar
Foffi, G., McCullagh, G. D., Lawlor, A., et al. (2002). Phys. Rev. E 65(3): 031407.CrossRefGoogle Scholar
Ford, I. J. (1997). Phys. Rev. E 56(5): 5615–29.Google Scholar
Fredericks, W. J., Hammonds, M. C., Howard, S. B., and Rosenberger, F. (1994). J. Crystal Growth 141: 183–92.Google Scholar
Galkin, O., Chen, K., Nagel, R. L., Hirsch, R. E., and Vekilov, P. G. (2002). Proc. Natl. Acad. Sci. USA 99: 8479–83.Google Scholar
Galkin, O., Nagel, R. L., and Vekilov, P. G. (2007a). J. Mol. Biol. 365(2): 425–39.Google Scholar
Galkin, O., Pan, W., Filobelo, L., et al. (2007b). Biophys. J. 93: 902–13.Google Scholar
Galkin, O., and Vekilov, P. G. (2000a). J. Am. Chem. Soc. 122: 156–63.Google Scholar
Galkin, O., and Vekilov, P. G. (2000b). Proc. Natl. Acad. Sci. USA 97(12): 6277–81.Google Scholar
Garcia-Ruiz, J. M., Gonzalez-Ramirez, L. A., Gavira, J. A., and Otalora, F. (2002). Acta Crystallogr. D 58(Pt 10, Pt 1): 1638–42.Google Scholar
Garetz, B., Matic, J., and Myerson, A. (2002). Phys. Rev. Lett. 89: 175501.Google Scholar
Gebauer, D., Volkel, A., and Colfen, H. (2008). Science 322(5909): 1819–22.Google Scholar
George, A., and Wilson, W. W. (1994). Acta Crystallogr. D 50: 361–65.Google Scholar
Georgiou, D. K. (2006). Phase transitions in insulin solutions and possible implications in living organisms. Ph.D. dissertation, University of Houston, Houston, TX.Google Scholar
Georgiou, D. K., and Vekilov, P. G. (2006). Proc. Natl. Acad. Sci. USA 103: 1681–86.Google Scholar
Gibbs, J. W. (1876). Trans. Connect. Acad. Sci. 3: 108248.Google Scholar
Gibbs, J. W. (1878). Trans. Connect. Acad. Sci. 3: 343524.Google Scholar
Giesen, M., Schulze Icking-Konert, G., Stapel, D., and Ibach, H. (1996). Surface Sci. 366: 229–38.CrossRefGoogle Scholar
Gilmer, G. H., Ghez, R., and Cabrera, N. (1971). J. Crystal Growth 8: 7993.Google Scholar
Gliko, O., Neumaier, N., Pan, W., et al. (2005a). J. Crystal Growth 275(1–2): e1409–16.Google Scholar
Gliko, O., Neumaier, N., Pan, W., et al. (2005b). J. Am. Chem. Soc. 127: 3433–38.Google Scholar
Gliko, O., Pan, W., Katsonis, P., et al. (2007). J. Phys. Chem. B 111(12): 3106–14.Google Scholar
Gliko, O., Reviakine, I., and Vekilov, P. G. (2003). Phys. Rev. Lett. 90: 225503.Google Scholar
Gower, L. B. (2008). Chem. Rev. 108(11): 4551–627.Google Scholar
Grigsby, J. J., Blanch, H. W., and Prausnitz, J. M. (2001). Biophys. Chem. 91(3): 231–43.Google Scholar
Groenewold, J., and Kegel, W. K. (2001). J. Phys. Chem. B 105(47): 11702–9.Google Scholar
Guo, B., Kao, S., McDonald, H., et al. (1999). J. Crystal Growth 196: 424–33.Google Scholar
Haas, C., Drenth, J., and Wilson, W. W. (1999). J. Phys. Chem. B 103: 2808–11.Google Scholar
Halban, P., Mutkoski, R., Dodson, G., and Orci, L. (1987). Diabetologia 30(5): 348–53.Google Scholar
Harris, J. M. (ed.) (1992). Poly(ethelene)glycol Chemistry: Biotechnical and Biomedical Applications. New York, NY: Plenum Press.Google Scholar
Harrison, P. M., and Arosio, P. (1996). Biochim. Biophys. Acta 1275: 161203.Google Scholar
Hemming, S. A., Bochkarev, A., Darst, S. A., et al. (1995). J. Mol. Biol. 246(2): 308–16.Google Scholar
Hempstead, P. D., Yewdall, S. J., Fernie, A. R., et al. (1997). J. Mol. Biol. 268(2): 424–48.Google Scholar
Hill, A. (1990). Nature 348(6300): 426–28.Google Scholar
Hirsch, R. E., Raventos-Suarez, C., Olson, J. A., and Nagel, R. L. (1985). Blood 66(4): 775–77.Google Scholar
Hollingsworth, M. D. (2002). Science 295: 2410–13.CrossRefGoogle Scholar
Hooks, D. E., Yip, C. M., and Ward, M. D. (1998). J. Phys. Chem. B 102: 99589965.Google Scholar
Houston, P. L. (2001). Chemical Kinetics and Reaction Dynamics. New York, NY: McGraw-Hill Higher Education.Google Scholar
Howard, S. B., Twigg, P. J., Baird, J. K., and Meehan, E. J. (1988). J. Crystal Growth 90: 94104.Google Scholar
Howell, S., and Tyhurst, M. (1982). In The Secretory Granule, Poisner, A. M. and Trifaro, J. M. (eds.). Amsterdam: Elsevier, pp. 155–72.Google Scholar
Hu, Z. W., Thomas, B. R., and Chernov, A. A. (2001). Acta Crystallogr. D 57: 840–46.Google Scholar
Hutchens, S. B., and Wang, Z.-G. (2007). J. Chem. Phys. 127: 084912.Google Scholar
Israelachvili, J., and Pashley, R. (1982). Nature 300: 341–42.Google Scholar
Israelachvili, J., and Wennerstrom, H. (1996). Nature 379(6562): 219–25.Google Scholar
Israelachvili, J. N. (1995). Intermolecular and Surface Forces. New York, NY: Academic Press.Google Scholar
Jackson, K. A. (1958). In Growth and Perfection of Crystals, Doremus, R. H., Roberts, B. W., and Turnbull, D. (eds.). London: Chapman & Hall, pp. 319–23.Google Scholar
Jacob, J., Anisimov, M. A., Sengers, J. V., et al. (2001). Phys. Chem. Chem. Phys. 3(5): 829–31.Google Scholar
Kaischew, R. (1936). Z. Phys. 102: 684–90.Google Scholar
Kashchiev, D. (1982). J. Chem. Phys. 76(10): 5098–102.Google Scholar
Kashchiev, D. (1995). In Science and Technology of Crystal Growth, Eerden, J. P. v. d. and Bruinsma, O. S. L. (eds.). Dordrecht: Kluwer Academic, pp. 5356.Google Scholar
Kashchiev, D. (2000). In Basic Theory with Applications. Oxford: Butterworth-Heinemann.Google Scholar
Kashchiev, D. (2003). J. Chem. Phys. 118: 1837–51.Google Scholar
Kauzmann, W. (1959). In Advances in Protein Chem (vol. 14), Anfinsen, C. B., Anson, M. L., Bailey, K., and Edsall, J. T. (eds.). New York, NY: Academic Press, pp. 163.Google Scholar
Kawasaki, T., and Tanaka, H. (2010). Proc. Natl. Acad. Sci. USA 107(32): 14036–41.Google Scholar
Kellogg, G. L. (1994). Phys. Rev. Lett. 73: 1833–36.Google Scholar
Kokkoli, E., and Zukoski, C. F. (1999). J. Colloid Interfac. Sci. 209(1): 6065.CrossRefGoogle Scholar
Kossel, W. (1928). Nachr. Ges. Wiss. Götingen 1928: 135–38.Google Scholar
Krishnan, R., and Lindquist, S. L. (2005). Nature 435(7043): 765–72.Google Scholar
Kuehner, D. E., Heyer, C., Ramsch, C., et al. (1997). Biophys. J. 73(6): 3211–24.Google Scholar
Kuipers, L., Hoogeman, M., and Frenken, J. (1993). Phys. Rev. Lett. 71(21): 3517–20.Google Scholar
Kulkarni, A. M., Chatterjee, A. P., Schweitzer, K. S., and Zukoski, C. F. (1999). Phys. Rev. Lett. 83(22): 4554–57.Google Scholar
Kulkarni, A. M., Dixit, N. M., and Zukoski, C. F. (2003). Faraday Discuss. 123: 3750; discussion 75–97, 419–21.Google Scholar
Kulkarni, A. M., and Zukoski, C. F. (2001). J. Crystal Growth 232: 156–64.Google Scholar
Kuznetsov, Y. G., Malkin, A. J., Land, T. A., et al. (1997). Biophys. J. 72: 2357–64.Google Scholar
Kuznetsov, Y. G., Konnert, J., Malkin, A. J., and McPherson, A. (1999). Surf. Sci. 440: 6980.Google Scholar
Kuznetsov, Y. G., Malkin, A. J., and McPherson, A. (2001). J. Crystal Growth 232: 3039.Google Scholar
Land, T. A., DeYoreo, J. J., and Lee, J. D. (1997). Surf. Sci. 384: 136–55.Google Scholar
Landau, E. M. (2003). In Methods and Results in Crystallization of Membrane Proteins, Iwata, S. (ed.). La Jolla, CA: International University Line, pp. 3955.Google Scholar
Landau, E. M., and Rosenbusch, J. P. (1996). Proc. Natl. Acad. Sci. USA 93(25): 14532–35.Google Scholar
Langer, J. S. (1975). In Fluctuations and Instabilities in Phase Transitions, Riske, T. (ed.). New York, NY: Plenum Press, pp. 1942.CrossRefGoogle Scholar
Lauffer, M. A. (1975). Mol. Biol. Biophys. 20: 1264.Google Scholar
Lawson, D. M., Artymiuk, P. J., Yewdall, S. J., et al. (1991). Nature 349: 541–44.Google Scholar
Lawson, S. E., Oakley, S., Smith, N. A., and Bareford, D. (1999). Clin. Lab. Haematol. 21(2): 99102.Google Scholar
Leckband, D., and Israelachvili, J. (2001). Q. Rev. Biophys. 34: 105267.Google Scholar
Lee, J. S., Lee, Y.-J., Tae, E. L., Park, Y. S., and Yoon, K. B. (2003). Science 301(5634): 818–21.Google Scholar
Leunissen, M. E., Christova, C. G., Hynninen, A.-P., et al. (2005). Nature 437(7056): 235–40.Google Scholar
Lin, H., Petsev, D. N., Yau, S.-T., Thomas, B. R., and Vekilov, P. G. (2001). Crystal Growth Des. 1(1): 7379.Google Scholar
Lin, H., Rosenberger, F., Alexander, J. I. D., and Nadarajah, A. (1995). J. Crystal Growth 151: 153–62.Google Scholar
Lin, H., Vekilov, P. G., and Rosenberger, F. (1996). J. Crystal Growth 158: 552–59.Google Scholar
Liu, W., Cellmer, T., Keerl, D., Prausnitz, J. M., and Blanch, H. W. (2005a). Biotech. Bioeng. 90(4): 482–90.Google Scholar
Liu, Y., Chen, W.-R., and Chen, S.-H. (2005b). J. Chem. Physics 122(4): 044507.Google Scholar
Lomakin, A., Asherie, N., and Benedek, G. (1999). Proc. Natl. Acad. Sci. USA 96: 9465–68.Google Scholar
Lomakin, A., Asherie, N., and Benedek, G. B. (1996a). J. Chem. Phys. 104: 1646–56.CrossRefGoogle Scholar
Lomakin, A., Chung, D. S., Benedek, G. B., Kirschner, D. A., and Teplow, D. B. (1996b). Proc. Natl. Acad. Sci. USA 93: 1125–29.Google Scholar
Long, M. L., Bishop, J. B., Nagabhushan, T. L., Reichert, P., Smith, G. D., and DeLucas, L. J. (1996). J. Crystal Growth 168: 233–43.Google Scholar
Lothe, J., and Pound, G. M. (1966). J. Chem. Phys. 45(2): 630–34.Google Scholar
Lounnas, V., Pettitt, B. M., Findsen, L., and Subramanian, S. (1992). J. Phys. Chem. 96: 7157–58.Google Scholar
Lounnas, V., Pettitt, B. M., and Phillips, G. N. (1994). Biophysical J. 66: 601–14.Google Scholar
Lu, L., and Berkowitz, M. L. (2006). J. Chem. Phys. 124(10): 101101.Google Scholar
Lutsko, J. F., and Nicolis, G. (2006). Phys. Rev. Lett. 96: 046102.Google Scholar
Lyuksyutov, I., Naumovets, A. G., and Pokrovsky, V. (1992). Two-Dimensional Crystals. Boston: Academic Press.Google Scholar
Makarov, V. A., Pettitt, B. M., and Feig, M. (2002). Accounts Chem. Res. 35: 376–84.Google Scholar
Malkin, A., Kuznetsov, Y., and McPherson, A. (1997). Surf. Sci. 393: 95107.Google Scholar
Malkin, A. J., Kuznetsov, Y. G., Glanz, W., and McPherson, A. (1996a). J. Phys. Chem. 100: 11736–43.Google Scholar
Malkin, A. J., Kuznetsov, Y. G., Land, T. A., DeYoreo, J. J., and McPherson, A. (1996b). Nature Struct. Biol. 2: 956–59.Google Scholar
Malkin, A. J., Kuznetsov, Y. G., Lucas, R. W., and McPherson, A. (1999a). J. Struct. Biol. 127: 3543.Google Scholar
Malkin, A. J., Kuznetsov, Y. G., and McPherson, A. (1996c). J. Struct. Biol 117: 124–37.Google Scholar
Malkin, A. J., Kuznetsov, Y. G., and McPherson, A. (1996d). Proteins Struct. Func. Genet. 24: 247–52.Google Scholar
Malkin, A. J., Kuznetsov, Y. G., and McPherson, A. (1999b). J. Crystal Growth 196: 471–88.Google Scholar
Malkin, A. J., and McPherson, A. (1993). J. Crystal Growth 128: 1232–35.Google Scholar
Malkin, A. J., and McPherson, A. (1994). Acta Crystallogr. D 50(4): 385–95.Google Scholar
Malkin, A. J., and McPherson, A. (2004a). In From Fluid–Solid Interfaces to Nanostructural Engineering, vol. 2: Assembly in Hybrid and Biological Systems, DeYoreo, J. J. and Lui, X. Y. (eds.). New York, NY: Plenum Press/Kluwer Academic, pp. 201–38.Google Scholar
Malkin, A. J., Land, T. A., Kuznetsov, Y. G., McPherson, A., and DeYoreo, J. J. (1995). Phys. Rev. Lett. 75(14): 2778–81.Google Scholar
Malkin, A. J., and Thorne, R. E. (2004b). Methods 34: 273–99.Google Scholar
Manciu, M., and Ruckenstein, E. (2002). Langmuir 18: 8910–18.Google Scholar
Massover, W. H. (1993). Micron 24(4): 389437.Google Scholar
Mateja, A., Devedjiev, Y., Krowarsch, D., et al. (2002). Acta Crystallogr. D 58: 1983–91.Google Scholar
Matsuda, S., Senda, T., Itoh, S., et al. (1989). J. Biol. Chem 264: 13381–82.Google Scholar
McClurg, R. B., and Zukoski, C. F. (1998). J. Colloid Interfac. Sci. 208(2): 529–42.Google Scholar
McPherson, A. (1982). Preparation and Analysis of Protein Crystals. New York, NY: Wiley.Google Scholar
McPherson, A. (1991). J. Crystal Growth 110: 110.Google Scholar
McPherson, A. (1999). Crystallization of Biological Macromolecules. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
McPherson, A. (2009). Introduction to Macromolecular Crystallography. Hoboken, NJ: Wiley.Google Scholar
McPherson, A., and Cudney, B. (2006). J. Struct. Biol. 156(3): 387406.Google Scholar
McPherson, A., Malkin, A. J., and Kuznetsov, Y. G. (1995). Structure 3: 759–68.Google Scholar
McPherson, A., Malkin, A. J., Kuznetsov, Y. G., et al. (1999). J. Crystal Growth 196: 572–86.Google Scholar
McPherson, A., Malkin, A. J., and Kuznetsov, Y. G. (2000). Ann. Rev. Biomol. Struct. 20: 361410.Google Scholar
McPherson, A., and Shlichta, P. (1988). J. Crystal Growth 90: 4750.Google Scholar
McQuarrie, D. A. (1976). Statistical Mechanics. New York, NY: Harper & Row.Google Scholar
Meining, W., Bacher, A., Bachmann, L., et al. (1995). J. Mol. Biol. 253: 208–18.Google Scholar
Monaco, L. A., and Rosenberger, F. (1993). J. Crystal Growth 129: 465–84.Google Scholar
Mossa, S., Sciortino, F., Tartaglia, P., and Zaccarelli, E. (2004). Langmuir 20(24): 10756–63.Google Scholar
Muschol, M., and Rosenberger, F. (1995). J. Chem. Phys. 103: 10424–32.Google Scholar
Muschol, M., and Rosenberger, F. (1997). J. Chem. Phys. 107(6): 1953–62.Google Scholar
Mutaftschiev, B. (1993). In Handbook of Crystal Growth, Hurle, D. T. J. (ed.). Amsterdam: Elsevier, pp. 189247.Google Scholar
Nakada, T., Sazaki, G., Miyashita, S., Durbin, S. D., and Komatsu, H. (1999). J. Crystal Growth 196: 503–10.Google Scholar
Neal, B. L., Asthagiri, D., and Lenhoff, A. M. (1998). Biophys. J. 75(5): 2469–77.Google Scholar
Neal, B. L., Asthagiri, D., Velev, O. D., Lenhoff, A. M., and Kaler, E. W. (1999). J. Crystal Growth 196(2–4): 377–87.Google Scholar
Nelson, D. L., and Cox, M. M. (2000). Lehninger’s Principles of Biochemistry (3rd edn). New York, NY: W.H. Freeman.Google Scholar
Noro, M. G., Kern, N., and Frenkel, D. (1999). Eurpophys. Lett. 48(3): 332–38.Google Scholar
Oki, H., Matsuura, Y., Komatsu, H., and Chernov, A. A. (1999). Acta Crystallogr. D 55: 114–21.Google Scholar
Oxtoby, D. W. (2002). Nature 420: 277–78.Google Scholar
Oxtoby, D. W., and Kashchiev, D. (1994). J. Chem. Phys. 100(10): 7665–71.Google Scholar
Pal, S. K., and Zewail, A. H. (2004). Chem. Rev. 104(4): 2099–124.Google Scholar
Paliwal, A., Asthagiri, D., Abras, D., Lenhoff, A. M., and Paulaitis, M. E. (2005). Biophys. J. 89(3): 1564–73.Google Scholar
Pan, W., Filobelo, L., Pham, N. D. Q., et al. (2009). Phys. Rev. Lett. 102(5): 058101.Google Scholar
Pan, W., Galkin, O., Filobelo, L., Nagel, R. L., and Vekilov, P. G. (2007). Biophys. J. 92(1): 267–77.Google Scholar
Pan, W., Kolomeisky, A. B., and Vekilov, P. G. (2005). J. Chem. Phys. 122: 174905.Google Scholar
Pan, W., Vekilov, P. G., and Lubchenko, V. (2010). J. Phys. Chem. B 114 7620–30.Google Scholar
Pashley, R. M., and Israelachvili, J. N. (1984). J. Colloid Interfac. Sci. 97: 446–52.Google Scholar
Patton, W. F. (1995). J. Chromatogr. 698: 5587.Google Scholar
Paunov, V., Kaler, E., Sandler, S., and Petsev, D. (2001). J. Colloid Interafac. Sci. 240: 640–43.Google Scholar
Pellegrini, L. (2005). Nature 436(7048): 174.Google Scholar
Peseta, S., Langer, J. A., Zoon, K. C., and Samuel, C. E. (1989). Ann. Rev. Biochem. 56: 727–78.Google Scholar
Petsev, D. N., Chen, K., Gliko, O., and Vekilov, P. G. (2003a). Proc. Natl. Acad. Sci. USA 100: 792–96.Google Scholar
Petsev, D. N., and Denkov, N. D. (1992). J. Colloid Interfac. Sci 149: 329–44.Google Scholar
Petsev, D. N., Thomas, B. R., Yau, S.-T., et al. (2001). J. Crystal Growth 232: 2129.Google Scholar
Petsev, D. N., Thomas, B. R., Yau, S.-T., and Vekilov, P. G. (2000). Biophys. J. 78: 2060–69.Google Scholar
Petsev, D. N., and Vekilov, P. G. (2000). Phys. Rev. Lett. 84: 1339–42.Google Scholar
Petsev, D. N., Wu, X., Galkin, O., and Vekilov, P. G. (2003b). J. Phys. Chem. B 107: 3921–26.Google Scholar
Pouget, E. M., Bomans, P. H. H., Goos, J., et al. (2009). Science 323(5920): 1455–58.Google Scholar
Prausnitz, J., and Foose, L. (2007). Pure Appl. Chem. 79(8): 1435–44.Google Scholar
Puhler, G., Weinkauf, S., Bachmann, L., et al. (1992). EMBO J. 11: 1607–16.Google Scholar
Pusey, M., Witherow, W., and Naumann, R. (1988). J. Crystal Growth 90: 105–11.Google Scholar
Queisser, H. J., and Haller, E. E. (1998). Science 281: 945–50.Google Scholar
Raviv, U., and Klien, J. (2002). Science 297: 1540–43.Google Scholar
Reichert, P., McNemar, C., Nagabhushan, N., et al. (1995). Metal–interferon-alpha crystals. U.S. Patent No. 5,441,734.Google Scholar
Reviakine, I., Georgiou, D. K., and Vekilov, P. G. (2003). J. Am. Chem. Soc. 125(38): 11684–93.Google Scholar
Ries-Kautt, M. M., and Ducruix, A. F. (1989). J. Biol. Chem. 264(2): 745–48.Google Scholar
Rosenbaum, D. F., Kulkarni, A., Ramakrishnan, S., and Zukoski, C. F. (1999). J. Chem. Phys. 111: 9882–90.Google Scholar
Rosenbaum, D. F., Zamora, P. C., and Zukoski, C. F. (1996). Phys. Rev. Lett. 76: 150–53.Google Scholar
Rosenberger, F., Vekilov, P. G., Muschol, M., and Thomas, B. R. (1996). J Crystal Growth 167: 127.Google Scholar
Rübenkamp, E., Braun, N., Bachmann, L., et al. (1995). Ultramicroscopy 58: 337–51.Google Scholar
Sauter, C., Ng, J. D., Lorber, B., et al. (1999). J. Crystal Growth 196: 365–76.Google Scholar
Savage, J. R., and Dinsmore, A. D. (2009). Phys. Rev. Lett. 102(19): 198302.Google Scholar
Sazaki, G., Okada, M., Matsui, T., et al. (2008). Crystal Growth Des. 8(6): 2024–31.Google Scholar
Sazaki, G., Ooshima, H., Kato, J., Harano, Y., and Hirokawa, N. (1993). J. Crystal Growth 130: 357–67.Google Scholar
Schall, C., Arnold, E., and Wiencek, J. M. (1996). J. Crystal Growth 165: 293302.Google Scholar
Schmeltzer, J. N. (2001). J. Colloid Interfac. Sci. 242: 354–72.Google Scholar
Schwartz, D. K. (2001). Annu. Rev. Phys. Chem. 52: 107–37.Google Scholar
Sciortino, F., Mossa, S., Zaccarelli, E., and Tartaglia, P. (2004). Phys. Rev. Lett. 93: 055701.Google Scholar
Sear, R. P. (1999). J. Chem. Phys. 111(10): 4800–6.Google Scholar
Sear, R. P. (2009). J. Chem. Phys. 131(7): 074702.Google Scholar
Shah, M., Galkin, O., and Vekilov, P. G. (2004). J. Chem. Phys. 121: 7505–12.Google Scholar
Shchukin, E. D., Pertsov, A. V., and Amelina, E. A. (1982). Colloid Chemistry. Moscow: Moscow University Press.Google Scholar
Sholl, D. S., and Skodje, R. T. (1995). Phys. Rev. Lett. 75: 3158–61.Google Scholar
Soga, K. G., Melrose, J. M., and Ball, R. C. (1999). J. Chem. Phys. 110(4): 2280–88.Google Scholar
Song, X. Y., and Zhao, X. F. (2004). J. Chem. Phys. 120(4): 2005–9.Google Scholar
Steinrauf, L. K. (1959). Acta Crystallogr. 12: 7778.Google Scholar
Stojanoff, V., Siddons, D. P., Monaco, L. A., Vekilov, P. G., and Rosenberger, F. (1997). Acta Crystallogr. D 53: 588–95.Google Scholar
Stradner, A., Sedgwick, H., Cardinaux, F., et al. (2004). Nature 432(7016): 492–95.Google Scholar
Stranski, I. N. (1928). Z. Phys. Chem. 136: 259–78.Google Scholar
Stranski, I. N., and Kaischew, R. (1934). Z. Phys. Chem. B26: 100–13.Google Scholar
Svergun, D. I., Richard, S., Koch, M. H., et al. (1998). Proc. Natl. Acad. Sci. USA 95(5): 2267–72.Google Scholar
Swartzentruber, B. S., Mo, Y.-W., Kariotis, R., Lagally, M. G., and Webb, M. B. (1990). Phys. Rev. Lett. 65(15): 1913–16.Google Scholar
Talanquer, V., and Oxtoby, D. W. (1998). J. Chem. Phys. 109(1): 223–27.Google Scholar
Tanford, C. (1980). The Hydrophobic Effect: Formation of Micelles and Biological Membranes. New York, NY: Wiley.Google Scholar
Tanford, C., and Reynolds, J. A. (2001). Nature’s Robots: A History of Proteins. Oxford: Oxford University Press.Google Scholar
Tardieu, A., Bonnete, F., Finet, S., and Vivares, D. (2002). Acta Crystallogr. D 58(10 Part 1): 1549–53.Google Scholar
Tardieu, A., Finet, S., and Bonnete, F. (2001). J. Crystal Growth 232: 19.Google Scholar
Tardieu, A., Verge, A. L., Malfois, M., et al. (1999). J. Crystal Growth 196: 193203.Google Scholar
ten Wolde, P. R., and Frenkel, D. (1997). Science 277: 1975–78.Google Scholar
Tessier, P. M., and Lenhoff, A. M. (2003). Curr. Opin. Biotech. 14(5): 512–16.Google Scholar
Tessier, P. M., Vandrey, S. D., Berger, B. W., et al. (2002). Acta Crystallogr. D 58(Pt 10, Pt 1): 1531–35.Google Scholar
Thomas, B. R., Carter, D., and Rosenberger, F. (1997). J. Crystal Growth 187: 499510.Google Scholar
Thomas, B. R., and Chernov, A. A. (2001). J. Crystal Growth 232: 237–43.Google Scholar
Thomas, B. R., Chernov, A. A., Vekilov, P. G., and Carter, D. C. (2000). J. Crystal Growth 211: 149–56.Google Scholar
Thomas, B. R., Vekilov, P. G., and Rosenberger, F. (1996). Acta Crystallogr. D 52: 776–84.Google Scholar
Thomson, J. A., Schurtenberger, P., Thurston, G. M., and Benedek, G. B. (1987). Proc. Natl. Acad. Sci. USA 84: 7079–83.Google Scholar
Tidor, B., and Karplus, M. (1994). J. Mol. Biol. 238: 405–14.Google Scholar
Uwaha, M., Saito, Y., and Sato, M. (1995). J. Crystal Growth 146: 164–72.Google Scholar
Uzgiris, E. E., and Golibersuch, D. C. (1974). Phys. Rev. Lett. 32(2): 3740.Google Scholar
van der Waals, J. D. (1910). In Nobel Lectures, Physics 1901–1921. Amsterdam: Elsevier, p. 254.Google Scholar
Van Driessche, A. E. S., OtaÌlora, F. N., Sazaki, G., et al. (2008). Crystal Growth Des. 8(12): 4316–23.Google Scholar
Vekilov, P. (2007a). Br. J. Haematol. 139(2): 173–84.Google Scholar
Vekilov, P. G. (1993). In Studies and Concepts in Crystal Growth, Komatsu, H. (ed.). Oxford: Pergamon, pp. 2549.Google Scholar
Vekilov, P. G. (1999). Adv. Space Res. 24: 1231–40.Google Scholar
Vekilov, P. G. (2003). In >Methods in Enzymology, vol. 368: Macromolecular Crystallography, Part C, Carter, J. C.W. and Sweet, R.M. (eds.). San Diego, CA: Academic Press, pp. 84105.Google Scholar
Vekilov, P. G. (2004a). Crystal Growth Des. 4: 671–85.Google Scholar
Vekilov, P. G. (2004b). In Nanoscale Structure and Assembly at Solid–Fluid Interfaces, vol. 2: Assembly in Hybrid and Biological Systems, DeYoreo, J. J. and Lui, X. Y. (eds.). New York, NY, Kluwer Academic, pp. 145200.Google Scholar
Vekilov, P. G. (2005). In >Methods in Molecular Biology, vol. 300: Protein Nanotechnology, Protocols, Instrumentation, and Applications, Vo-Dinh, T. (ed.). Totowa, NJ, Humana Press, pp. 1552.Google Scholar
Vekilov, P. G. (2007b). In Perspectives on Inorganic, Organic and Biological Crystal Growth: From Fundamentals to Applications: AIP Conference Proceedings, Skowronski, M., DeYoreo, J. J., and Wang, C. A. (eds.). Melville, NY: AIP, pp. 235–67.Google Scholar
Vekilov, P. G. (2007c). Crystal Growth Des., 7(12): 2796–810.Google Scholar
Vekilov, P. G. (2007d). Crystal Growth Des. 7(11): 2239–46.Google Scholar
Vekilov, P. G., and Alexander, J. I. D. (2000). Chem. Rev. 100: 2061–89.Google Scholar
Vekilov, P. G., Alexander, J. I. D., and Rosenberger, F. (1996a). Phys. Rev. E 54: 6650–60.Google Scholar
Vekilov, P. G., Ataka, M., and Katsura, T. (1993). J. Crystal Growth 130: 317–20.Google Scholar
Vekilov, P. G., Ataka, M., and Katsura, T. (1995a). Acta Crystallogr. D D51: 207–19.Google Scholar
Vekilov, P. G., and Chernov, A. A. (2002). In Solid State Physics (vol. 57), Ehrenreich, H. and Spaepen, F. (eds.). New York, NY: Academic Press, pp. 1147.Google Scholar
Vekilov, P. G., Feeling-Taylor, A. R., Petsev, D. N., et al. (2002a). Biophys. J. 83: 1147–56.Google Scholar
Vekilov, P. G., Feeling-Taylor, A. R., Yau, S.-T., and Petsev, D. N. (2002b). Acta Crystallogr. D 58: 1611–16.Google Scholar
Vekilov, P. G., and Galkin, O. (2003). Colloids Surfaces A 215: 125–30.Google Scholar
Vekilov, P. G., and Kuznetsov, Y. G. (1992a). J. Crystal Growth 119: 248–60.Google Scholar
Vekilov, P. G., Kuznetsov, Y. G., and Chernov, A. A. (1992b). J. Crystal Growth 121: 643–55.Google Scholar
Vekilov, P. G., Monaco, L. A., and Rosenberger, F. (1995b). J. Crystal Growth 156: 267–78.Google Scholar
Vekilov, P. G., Monaco, L. A., Thomas, B. R., Stojanoff, V., and Rosenberger, F. (1996b). Acta Crystallogr. D 52: 785–98.Google Scholar
Vekilov, P. G., Pan, W., Gliko, O., Katsonis, P., and Galkin, O. (2008). In Lecture Notes in Physics, vol. 752: Aspects of Physical Biology: Biological Water, Protein Solutions, Transport and Replication, Franzese, G. and Rubi, M. (eds.). Heidelberg: Springer, pp. 6595.Google Scholar
Vekilov, P. G., and Rosenberger, F. (1996). J. Crystal Growth 158: 540–51.Google Scholar
Vekilov, P. G., and Rosenberger, F. (1998a). Phys. Rev. Lett 80: 2654–56.Google Scholar
Vekilov, P. G., and Rosenberger, F. (1998b). Phys. Rev. E 57: 6979–81.Google Scholar
Vekilov, P. G., and Rosenberger, F. (1998c). J. Crystal Growth 186: 251–61.Google Scholar
Vekilov, P. G., Thomas, B. R., and Rosenberger, F. (1998). J. Phys. Chem. B 102: 5208–16.Google Scholar
Velev, O. D., Kaler, E. W., and Lenhoff, A. M. (1998). Biophys. J. 75: 2682–97.Google Scholar
Verwey, E. J. W., and Overbeek, J. T. G. (1948). Theory of Stability of Lyophobic Colloids. Amsterdam: Elsevier.Google Scholar
Vivares, D., Kaler, E., and Lenhoff, A. (2005). Acta Crystallogr. D 61: 819–25.Google Scholar
Volmer, M. (1939). Kinetik der Phasenbildung. Dresden: Steinkopff.Google Scholar
Voronkov, V. V. (1970). Soviet Phys. Crystallogr. 15: 813.Google Scholar
Voronkov, V. V., and Rashkovich, L. N. (1992). Soviet Phys. Crystallogr. 37: 289–95.Google Scholar
Voronkov, V. V., and Rashkovich, L. N. (1994). J. Crystal Growth 144: 107–15.Google Scholar
Walton, A. G. (1969). In Nucleation, Zettlemoyer, A. C. (ed.). New York, NY: Marcel Dekker, pp. 225307.Google Scholar
Wang, J. F., Muller, M., and Wang, Z. G. (2009). J. Chem. Phys. 130(15): 154902-1–12.Google Scholar
Weinkauf, S., Bacher, A., Baumeister, W., et al. (1991). J. Mol. Biol. 221: 637–45.Google Scholar
Williams, E. D., and Bartelt, N. C. (1991). Science 251: 393400.Google Scholar
Wilson, W. W. (1990). Methods 1: 110–17.Google Scholar
Yamashita, M., Wesson, L., Eisenman, G., and Eisenberg, D. (1990). Proc. Natl, Acad. Sci. USA 87(15): 5648–52.Google Scholar
Yau, S.-T., Thomas, B. R., and Vekilov, P. G. (2000a). Phys. Rev. Lett. 85: 353–56.Google Scholar
Yau, S.-T., Petsev, D. N., Thomas, B. R., and Vekilov, P. G. (2000b). J. Mol. Biol. 303(5): 667–78.Google Scholar
Yau, S.-T., Thomas, B. R., Galkin, O., Gliko, O., and Vekilov, P. G. (2001). Proteins Struct. Func. Genet. 43: 343–52.Google Scholar
Yip, C. M., Brader, M. L., DeFelippis, M. R., and Ward, M. D. (1998a). Biophys. J. 74(5): 2199–209.Google Scholar
Yip, C. M., DePhelippis, M. R., Frank, B. H., Brader, M. L., and Ward, M. D. (1998b). Biophys. J. 75: 1172–79.Google Scholar
Yip, C. M., and Ward, M. D. (1996). Biophys. J. 71: 1071–78.Google Scholar
Zaitseva, N. P., DeYoreo, J. J., Dehaven, M. R., et al. (1997). J. Crystal Growth 180: 255–62.Google Scholar
Zangi, R., Hagen, M., and Berne, B. J. (2007). J. Am. Chem .Soc. 129(15): 4678–86.Google Scholar
Zel’dovich, Y. B. (1943). Acta Physicochim. URSS 18(11–12): 122.Google Scholar
Zhang, T. H., and Liu, X. Y. (2007). J. Phys. Chem. B 111(50): 14001–5.Google Scholar
Zimm, B. H. (1948). J. Chem. Phys. 6: 1093–99.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×