Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-16T20:16:11.577Z Has data issue: false hasContentIssue false

2 - Ancient DNA

from Part II - Biomolecular Archaeology

Published online by Cambridge University Press:  19 December 2019

Michael P. Richards
Affiliation:
Simon Fraser University, British Columbia
Kate Britton
Affiliation:
University of Aberdeen
Get access

Summary

Genetic sequences have traditionally been generated solely from modern individuals. Advances in laboratory and sequencing techniques, however, have made it possible to retrieve genetic information from fossil, archaeological, museum, or otherwise dead and degraded specimens. Genetic material derived from ancient specimens is referred to as ancient DNA (aDNA). The main advantage of ancient DNA is that it allows researchers to study past genetic diversity directly, rather than having to rely on modern genetic patterns to infer past population processes.

Type
Chapter
Information
Archaeological Science
An Introduction
, pp. 13 - 34
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, C. J., Dobney, K., Weyrich, L. S., Kaidonis, J., Walker, A. W., Haak, W., Bradshaw, C. J. A., Townsend, G., Sołtysiak, A., Alt, K. W., and Parkhill, J. 2013. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial Revolutions. Nature Genetics 45(4):450455.Google Scholar
Allentoft, M. E., Collins, M., Harker, D., Haile, J., Oskam, C. L., Hale, M. L., Campos, P. F., Samaniego, J. A., Gilbert, M. T. P., Willerslev, E., and Zhang, G. 2012. The half-life of DNA in bone: Measuring decay kinetics in 158 dated fossils. Proceedings of the Royal Society B: Biological Sciences 279(1748):47244733.Google Scholar
Atkinson, Q. D. 2011. Phonemic diversity supports a serial founder effect model of language expansion from Africa. Science 332(6027):346349.CrossRefGoogle ScholarPubMed
Ballard, J. W. O. and Whitlock, M. C. 2004. The incomplete natural history of mitochondria. Molecular Ecology 13(4):729744.Google Scholar
Balloux, F. 2010. The worm in the fruit of the mitochondrial DNA tree. Heredity 104(5):419.CrossRefGoogle ScholarPubMed
Bollongino, R., Tresset, A., and Vigne, J.-D. 2008. Environment and excavation: Pre-lab impacts on ancient DNA analyses. Comptes Rendus Palevol 7(2–3):9198.CrossRefGoogle Scholar
Bollongino, R. and Vigne, J.-D. 2008. Temperature monitoring in archaeological animal bone samples in the Near East arid area, before, during and after excavation. Journal of Archaeological Science 35(4):873881.Google Scholar
Bramanti, B., Thomas, M. G., Haak, W., Unterlaender, M., Jores, P., Tambets, K., Antanaitis-Jacobs, I. I., Haidle, M. N., Jankauskas, R., Kind, C. J., and Lueth, F. 2009. Genetic discontinuity between local hunter-gatherers and Central Europe’s first farmers. Science 326(5949):137140.Google Scholar
Carpenter, M. L., Buenrostro, J. D., Valdiosera, C., Schroeder, H., Allentoft, M. E., Sikora, M., Rasmussen, M., Gravel, S., Guillén, S., Nekhrizov, G., and Leshtakov, K. 2013. Pulling out the 1%: Whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries. The American Journal of Human Genetics 93(5):852864.CrossRefGoogle ScholarPubMed
Castelo, R., and Roverato, A. 2012. Inference of regulatory networks from microarray data with R and the bioconductor package qpgraph. Methods Molecular Biology. 802:215233.Google Scholar
Collins, M. J., Nielsen-Marsh, C. M., Hiller, J., Smith, C. I., Roberts, J. P., Prigodich, R. V., Wess, T. J., Csapo, J., Millard, A. R., and Turner-Walker, G. 2002. The survival of organic matter in bone: A review. Archaeometry 44(3):383394.Google Scholar
Cooper, A. and Poinar, H. N. 2000. Ancient DNA: Do it right or not at all. Science 289(5482):1139.CrossRefGoogle ScholarPubMed
Eriksson, A. and Manica, A. 2012. Effect of ancient population structure on the degree of polymorphism shared between modern human populations and ancient hominins. Proceedings of the National Academy of Sciences 109(35):1395613960.Google Scholar
Fu, Q., Li, H., Moorjani, P., Jay, F., Slepchenko, S. M., Bondarev, A. A., Johnson, P. L. F., Aximu-Petri, A., Prüfer, K., de Filippo, C., and Meyer, M. 2014. Genome sequence of a 45,000-year-old modern human from Western Siberia. Nature 514(7523):445449.CrossRefGoogle ScholarPubMed
Gerbault, P., Leonardi, M., Powell, A., Weber, C., Benecke, N., Burger, J., and Thomas, M. G. 2012. Domestication and migrations: Using mitochondrial DNA to infer domestication processes of goats and horses. In: `Kaiser, E., `Burger, J., and `Schier, W. (eds.) Population Dynamics in Prehistory and Early History, pp. 1730. Berlin, Boston: De Gruyter.Google Scholar
Gilbert, M. T. P., Bandelt, H.-J., Hofreiter, M., and Barnes, I. 2005. Assessing ancient DNA studies. Trends in Ecology and Evolution 20(10):541544.Google Scholar
Girdland Flink, L., Allen, R., Barnett, R., Malmström, H., Peters, J., Eriksson, J., Andersson, L., Dobney, K., and Larson, G. 2014. Establishing the validity of domestication genes using DNA from ancient chickens. Proceedings of the National Academy of Sciences 111(17):61846189.Google Scholar
Gronau, I., Hubisz, M. J., Gulko, B., Danko, C. G., and Siepel, A. 2011. Bayesian inference of ancient human demography from individual genome sequences. Nature Genetics 43(10):10311034.Google Scholar
Haile, J., Froese, D. G., MacPhee, R. D. E., Roberts, R. G., Arnold, L. J., Reyes, A. V., Rasmussen, M., Nielsen, R., Brook, B. W., Robinson, S., and Demuro, M. 2009. Ancient DNA reveals late survival of mammoth and horse in Interior Alaska. Proceedings of the National Academy of Sciences 106(52):2235222357.Google Scholar
Horsburgh, K. A. 2008. Wild or domesticated? An ancient DNA approach to canid species identification in South Africa’s Western Cape Province. Journal of Archaeological Science 35(6):14741480.Google Scholar
Knapp, M. and Hofreiter, M. 2010. Next generation sequencing of ancient DNA: Requirements, strategies and perspectives. Genes 1(2):227243.CrossRefGoogle Scholar
Korneliussen, T.S., Albrechtsen, A., and Nielsen, R., 2014. ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinformatics 15:356.Google Scholar
Krause, J., Fu, Q., Good, J. M., Viola, B., Shunkov, M. V., Derevianko, A. P., and Pääbo, S. 2010. The complete mitochondrial DNA genome of an unknown hominin from Southern Siberia. Nature 464(7290):894897.CrossRefGoogle ScholarPubMed
Krause, J., Lalueza-Fox, C., Orlando, L., Enard, W., Green, R. E., Burbano, H. A., Hublin, J.-J., Hänni, C., Fortea, J., De La Rasilla, M., and Bertranpetit, J. 2007. The derived FOXP2 variant of modern humans was shared with Neandertals. Current Biology 17(21):19081912.Google Scholar
Lalueza-Fox, C., Römpler, H., Caramelli, D., Stäubert, C., Catalano, G., Hughes, D., Rohland, N., Pilli, E., Longo, L., Condemi, S., and De La Rasilla, M. 2007. A melanocortin 1 receptor allele suggests varying pigmentation among Neanderthals. Science 318(5855):14531455.Google Scholar
Larson, G., Albarella, U., Dobney, K., Rowley-Conwy, P., Schibler, J., Tresset, A., Vigne, J.-D., Edwards, C. J., Schlumbaum, A., Dinu, A., and Bălăçsescu, A. 2007. Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. Proceedings of the National Academy of Sciences 104(39):1527615281.CrossRefGoogle ScholarPubMed
Li, H. and Durbin, R. 2011. Inference of human population history from individual whole-genome sequences. Nature 475(7357):493496.Google Scholar
Lindahl, T. 1993. Instability and decay of the primary structure of DNA. Nature 362(6422):709715.Google Scholar
Linz, B., Balloux, F., Moodley, Y., Manica, A., Liu, H., Roumagnac, P., Falush, D., Stamer, C., Prugnolle, F., van der Merwe, S. W., and Yamaoka, Y. 2007. An African origin for the intimate association between humans and Helicobacter pylori. Nature 445(7130):915918.Google Scholar
Llorente, M. G., Jones, E. R., Eriksson, A., Siska, V., Arthur, K. W., Arthur, J. W., Curtis, M. C., Stock, J. T., Coltorti, M., Pieruccini, P., and Stretton, S. 2015. Ancient Ethiopian genome reveals extensive Eurasian admixture in Eastern Africa. Science 350(6262):820822.CrossRefGoogle Scholar
Loog, L., Thomas, M. G., Barnett, R., Allen, R., Sykes, N., Paxinos, P. D., Lebrasseur, O., Dobney, K., Peters, J., Manica, A., and Larson, G. 2017. Inferring allele frequency trajectories from ancient DNA indicates that selection on a chicken gene coincided with changes in medieval husbandry practices. Molecular Biology and Evolution 34(8):19811990.Google Scholar
Ludwig, A., Pruvost, M., Reissmann, M., Benecke, N., Brockmann, G. A., Castanos, P., Cieslak, M., Lippold, S., Llorente, L., Malaspinas, A. S., and Slatkin, M. 2009. Coat color variation at the beginning of horse domestication. Science 324(5926):485.Google Scholar
Malmström, H., Gilbert, M. T. P., Thomas, M. G., Brandström, M., Storå, J., Molnar, P., Andersen, P. K., Bendixen, C., Holmlund, G., Götherström, A., and Willerslev, E. 2009. Ancient DNA reveals lack of continuity between Neolithic hunter-gatherers and contemporary Scandinavians. Current Biology 19(20):17581762.CrossRefGoogle ScholarPubMed
McVean, G. 2009. A genealogical interpretation of principal components analysis. PLoS Genetics 5(10):e1000686.Google Scholar
Meyer, M., Fu, Q., Aximu-Petri, A., Glocke, I., Nickel, B., Arsuaga, J.-L., Martínez, I., Gracia, A., de Castro, J. M. B., Carbonell, E., and Pääbo, S. 2014. A mitochondrial genome sequence of a hominin from Sima de Los Huesos. Nature 505(7483):403406.Google Scholar
Molina, J., Sikora, M., Garud, N., Flowers, J., Rubinstein, S., Reynolds, A., Huang, P., Jackson, S., Schaal, B. A., Bustamante, C. D., and Boyko, A. R. 2011. Molecular evidence for a single evolutionary origin of domesticated rice. Proceedings of the National Academy of Sciences 108(20):83518356.Google Scholar
Nielsen, R. 2004. Population genetic analysis of ascertained SNP data. Human Genomics 1(3):218.Google Scholar
Nielsen, R. and Beaumont, M. A. 2009. Statistical inferences in phylogeography. Molecular Ecology 18(6):10341047.CrossRefGoogle ScholarPubMed
Olalde, I., Allentoft, M. E., Sánchez-Quinto, F., Santpere, G., Chiang, C. W. K., DeGiorgio, M., Prado-Martinez, J,. Rodríguez, J. A., Rasmussen, S., Quilez, J., and Ramírez, O. 2014. Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature 507(7491):225228.Google Scholar
Oppenheimer, S. 2012. Out-of-Africa, the peopling of continents and islands: Tracing uniparental gene trees across the map. Philosophical Transactions of the Royal Society of London B: Biological Sciences 367(1590):770784.Google Scholar
Orlando, L., Ginolhac, A., Zhang, G., Froese, D., Albrechtsen, A., Stiller, M., Schubert, M., Cappellini, E., Petersen, B., Moltke, I., and Johnson, P. L. 2013. Recalibrating Equus evolution using the genome sequence of an Early Middle Pleistocene horse. Nature 499(7456):7478.Google Scholar
Oskam, C. L., Haile, J., McLay, E., Rigby, P., Allentoft, M. E., Olsen, M. E., Bengtsson, C., Miller, G. H., Schwenninger, J. L., Jacomb, C., and Walter, R. 2010. Fossil avian eggshell preserves ancient DNA. Proceedings of the Royal Society of London B: Biological Sciences 277(1690):19912000.Google Scholar
Ottoni, C., Girdland Flink, L., Evin, A., Georg, C., De Cupere, B., Van Neer, W., Bartosiewicz, L., Linderholm, A., Barnett, R., Peters, J., and Decorte, R. 2013. Pig domestication and human-mediated dispersal in Western Eurasia revealed through ancient DNA and geometric morphometrics. Molecular Biology and Evolution 30(4):824832.Google Scholar
Palkopoulou, E., Mallick, S., Skoglund, P., Enk, J., Rohland, N., Li, H., Omrak, A., Vartanyan, S., Poinar, H., Götherström, A., and Reich, D. 2015. Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth. Current Biology 25(10):13951400.Google Scholar
Pang, J.-F., Kluetsch, C., Zou, X.-J., Zhang, A. B., Luo, L.-Y., Angleby, H., Ardalan, A., Ekström, C., Sköllermo, A., Lundeberg, J., and Matsumura, S. 2009. mtDNA data indicate a single origin for dogs south of Yangtze River, less than 16,300 years ago, from numerous wolves. Molecular Biology and Evolution 26(12):28492864.CrossRefGoogle Scholar
Parducci, L., Suyama, Y., Lascoux, M., and Bennett, K. D. 2005. Ancient DNA from pollen: A genetic record of population history in Scots Pine. Molecular Ecology 14(9):28732882.Google Scholar
Patterson, N., Moorjani, P., Luo, Y., Mallick, S., Rohland, N., Zhan, Y., Genschoreck, T., Webster, T., and Reich, D. 2012. Ancient Admixture in Human History. Genetics 192:10651093.CrossRefGoogle ScholarPubMed
Pickrell, J. K. and Reich, D. 2014. Toward a new history and geography of human genes informed by ancient DNA. Trends in Genetics 30(9):377389.Google Scholar
Pinhasi, R., Fernandes, D., Sirak, K., Novak, M., Connell, S., Alpaslan-Roodenberg, S., Gerritsen, F., Moiseyev, V., Gromov, A., Raczky, P., and Anders, A. 2015. Optimal ancient DNA yields from the inner ear part of the human petrous bone. PLoS One 10(6):e0129102.Google Scholar
Poinar, H., Kuch, M., McDonald, G., Martin, P., and Pääbo, S. 2003. Nuclear gene sequences from a Late Pleistocene sloth coprolite. Current Biology 13(13):11501152.Google Scholar
Prendergast, M.E., Lipson, M., Sawchuk, E.A., Olalde, I., Ogola, C.A., Rohland, N., Sirak, K.A., Adamski, N., Bernardos, R., Broomandkhoshbacht, N., Callan, K., Culleton, B.J., Eccles, L., Harper, T.K., Lawson, A.M., Mah, M., Oppenheimer, J., Stewardson, K., Zalzala, F., Ambrose, S.H., Ayodo, G., Gates, H.L., Gidna, A.O., Katongo, M., Kwekason, A., Mabulla, A.Z.P., Mudenda, G.S., Ndiema, E.K., Nelson, C., Robertshaw, P., Kennett, D.J., Manthi, F.K., and Reich, D., 2019. Ancient DNA reveals a multistep spread of the first herders into sub-Saharan Africa. Science 365: eaaw6275.CrossRefGoogle Scholar
Pritchard, J.K., Stephens, M., and Donnelly, P. 2000. Inference of Population Structure Using Multilocus Genotype Data. Genetics 155:945959.Google Scholar
Prüfer, K., Racimo, F., Patterson, N., Jay, F., Sankararaman, S., Sawyer, S., Heinze, A., Renaud, G., Sudmant, P. H., De Filippo, C., and Li, H. 2014. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505(7481):4349.Google Scholar
Prugnolle, F., Manica, A., and Balloux, F. 2005. Geography predicts neutral genetic diversity of human populations. Current Biology 15(5):R159–160.Google Scholar
Ramachandran, S., Deshpande, O., Roseman, C. C., Rosenberg, N. A., Feldman, M. W., and Cavalli-Sforza, L. L. 2005. Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proceedings of the National Academy of Sciences of the United States of America 102(44):1594215947.Google Scholar
Rasmussen, M., Guo, X., Wang, Y., Lohmueller, K. E., Rasmussen, S., Albrechtsen, A, Skotte, L., Lindgreen, S., Metspalu, M., Jombart, T., and Kivisild, T. 2011. An Aboriginal Australian genome reveals separate human dispersals into Asia. Science 334(6052):9498.Google Scholar
Reich, D., Green, R. E., Kircher, M., Krause, J., Patterson, N., Durand, E. Y., Viola, B., Briggs, A. W., Stenzel, U., Johnson, P. L., and Maricic, T. 2010. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468(7327):10531060.Google Scholar
Reich, D., Thangaraj, K., Patterson, N., Price, A. L., and Singh, L. 2009. Reconstructing Indian Population History. Nature 461(7263):489494.CrossRefGoogle ScholarPubMed
Rieux, A., Eriksson, A., Li, M., Sobkowiak, B., Weinert, L. A., Warmuth, V., Ruiz-Linares, A., Manica, A., and Balloux, F. 2014. Improved calibration of the human mitochondrial clock using ancient genomes. Molecular Biology and Evolution 31(10):27802792.Google Scholar
Rollo, F., Ubaldi, M., Ermini, L., and Marota, I. 2002. Ötzi’s last meals: DNA analysis of the intestinal content of the Neolithic glacier mummy from the Alps. Proceedings of the National Academy of Sciences 99(20):1259412599.Google Scholar
Rosenberg, N. A. and Nordborg, M. 2002. Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. Nature Reviews Genetics 3(5):380390.Google Scholar
Schiffels, S. and Durbin, R. 2014. Inferring human population size and separation history from multiple genome sequences. Nature Genetics 46(8):919925.Google Scholar
Schlebusch, C. M., Malmström, H., Günther, T., Sjödin, P., Coutinho, A., Edlund, H., Munters, A. R., Vicente, M., Steyn, M., Soodyall, H., Lombard, M., and Jakobsson, M., 2017. Southern African ancient genomes estimate modern human divergence to 350,000 to 260,000 years ago. Science 358: 652–655.Google Scholar
Secher, B., Fregel, R., Larruga, J. M., Cabrera, V. M., Endicott, P., Pestano, J. J., and González, A. M. 2014. The history of the North African mitochondrial DNA haplogroup U6 gene flow into the African, Eurasian and American continents. BMC Evolutionary Biology 14(1):109.Google Scholar
Seguin-Orlando, A., Korneliussen, T. S., Sikora, M., Malaspinas, A.-S., Manica, A., Moltke, I., Albrechtsen, A., Ko, A., Margaryan, A., Moiseyev, V., and Goebel, T. 2014. Genomic structure in Europeans dating back at least 36,200 years. Science 346(6213):11131118.Google Scholar
Skoglund, P., Ersmark, E., Palkopoulou, E., and Dalén, L. 2015. Ancient wolf genome reveals an early divergence of domestic dog ancestors and admixture into high-latitude breeds. Current Biology 25(11):15151519.Google Scholar
Skoglund, P., Northoff, B. H., Shunkov, M. V., Derevianko, A. P., Pääbo, S., Krause, J., and Jakobsson, M. 2014a. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proceedings of the National Academy of Sciences 111(6):22292234.Google Scholar
Skoglund, P., Sjödin, P., Skoglund, T., Lascoux, M., and Jakobsson, M. 2014b. Investigating population history using temporal genetic differentiation. Molecular Biology and Evolution 31(9):25162527.Google Scholar
Skoglund, P., Storå, J., Götherström, A., and Jakobsson, M. 2013. Accurate sex identification of ancient human memains using DNA shotgun sequencing. Journal of Archaeological Science 40(12):44774482.Google Scholar
Skoglund, P., Thompson, J. C., Prendergast, M. E., Mittnik, A., Sirak, K., Hajdinjak, M., Salie, T., Rohland, N., Mallick, S., Peltzer, A., and Heinze, A. 2017. Reconstructing prehistoric African population structure. Cell 171(1):5971.Google Scholar
Smith, C. I., Chamberlain, A. T., Riley, M. S., Stringer, C. B., and Collins, M. J. 2003. The thermal history of human fossils and the likelihood of successful DNA amplification. Journal of Human Evolution 45(3):203217.Google Scholar
Stringer, C. B. 1974. A Multivariate Study of Cranial Variation in Middle and Upper Pleistocene Human Populations. Doctoral thesis, Universiy of Bristol.Google Scholar
Stringer, C. B. and Andrews, P. 1988. Genetic and fossil evidence for the origin of modern humans. Science 239(4845):12631268.Google Scholar
Sunnåker, M., Busetto, A. G., Numminen, E., Corander, J., Foll, M., and Dessimoz, C. 2013. Approximate Bayesian computation. PLoS Comput Biol 9(1):e1002803.Google Scholar
Sverrisdóttir, O. Ó., Timpson, A., Toombs, J., Lecoeur, C., Froguel, P., Carretero, J. M., Arsuaga Ferreras, J. L., Götherström, A., and Thomas, M. G. 2014. Direct estimates of natural selection in Iberia indicate calcium absorption was not the only driver of lactase persistence in Europe. Molecular Biology and Evolution 31(4): 975-983.Google Scholar
Thalmann, O., Shapiro, B., Cui, P., Schuenemann, V. J., Sawyer, S. K., Greenfield, D. L., Germonpré, M. B., Sablin, M. V., López-Giráldez, F., Domingo-Roura, X., and Napierala, H. 2013. Complete mitochondrial genomes of ancient canids suggest a European origin of domestic dogs. Science 342(6160):871874.Google Scholar
Valdiosera, C. E., García, N., Anderung, C., Dalén, L., Crégut-Bonnoure, E., Kahlke, R.-D., Stiller, M., Brandström, M., Thomas, M. G., Arsuaga, J. L., and Götherström, A. 2007. Staying out in the cold: Glacial refugia and mitochondrial DNA phylogeography in ancient European brown bears. Molecular Ecology 16(24):51405148.Google Scholar
Warmuth, V., Eriksson, A., Bower, M. A., Barker, G., Barrett, E., Hanks, B. K., Li, S., Lomitashvili, D., Ochir-Goryaeva, M., Sizonov, G. V., and Soyonov, V. 2012. Reconstructing the origin and spread of horse domestication in the Eurasian Steppe. Proceedings of the National Academy of Sciences 109(21):82028206.Google Scholar
Warmuth, V., Eriksson, A., Bower, M. A., Cañon, J., Cothran, G., Distl, O., Glowatzki-Mullis, M.-L., Hunt, H., Luís, C., do Mar Oom, M., and Yupanqui, I. T. 2011. European domestic horses originated in two Holocene refugia. PLoS One 6(3):e18194.CrossRefGoogle ScholarPubMed
Weidenreich, F. 1940. Some problems dealing with ancient man. American Anthropologist 42(3):375383.Google Scholar
Wilde, S., Timpson, A., Kirsanow, K., Kaiser, E., Kayser, M., Unterländer, M., Hollfelder, N., Potekhina, I. D., Schier, W., Thomas, M. G., and Burger, J. 2014. Direct evidence for positive selection of skin, hair, and eye pigmentation in Europeans during the last 5,000 Y. Proceedings of the National Academy of Sciences 111(13):48324837.Google Scholar
Wolpoff, M. H. 1989. Multiregional evolution: The fossil alternative to Eden. In: `Mellar, P. and `Stringer, C. (eds.) The Human Revolution, pp. 62108. Princeton, NJ: Princeton University Press.Google Scholar
Yang, D. Y. and Watt, K. 2005. Contamination controls when preparing archaeological remains for ancient DNA analysis. Journal of Archaeological Science 32(3):331336.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×