Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T14:53:00.966Z Has data issue: false hasContentIssue false

Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria

Published online by Cambridge University Press:  09 October 2012

J. EITZINGER*
Affiliation:
Institute of Meteorology, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan Street 82, A-1190 Vienna, Austria CzechGlobe – Center for Global Climate Change Impacts Studies, Bělidla 986, 4a, 603 00 Brno, Czech Republic
S. THALER
Affiliation:
Institute of Meteorology, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan Street 82, A-1190 Vienna, Austria
E. SCHMID
Affiliation:
Institute for Sustainable Economic Development, University of Natural Resources and Life Sciences (BOKU), Feistmantelstr. 4, A-1180 Vienna, Austria
F. STRAUSS
Affiliation:
Institute for Sustainable Economic Development, University of Natural Resources and Life Sciences (BOKU), Feistmantelstr. 4, A-1180 Vienna, Austria
R. FERRISE
Affiliation:
Department of Plant, Soil and Environmental Science, University of Florence, Piazzale delle Cascine 18 50144 Florence, Italy
M. MORIONDO
Affiliation:
CNR-IBIMET, Via G. Caproni 8 50145 Florence, Italy
M. BINDI
Affiliation:
Department of Plant, Soil and Environmental Science, University of Florence, Piazzale delle Cascine 18 50144 Florence, Italy
T. PALOSUO
Affiliation:
Plant Production Research, MTT Agrifood Research Finland, Lönnrotinkatu 5, FI-50100 Mikkeli, Finland
R. RÖTTER
Affiliation:
Plant Production Research, MTT Agrifood Research Finland, Lönnrotinkatu 5, FI-50100 Mikkeli, Finland
K. C. KERSEBAUM
Affiliation:
Institute of Landscape Systems Analysis, Leibniz-Center for Agricultural Landscape Research (ZALF), 15374 Muencheberg, Germany
J. E. OLESEN
Affiliation:
Department of Agroecology, Aarhus University, Blichers Alle 20, P.O. Box 50, DK-8830 Tjele, Foulum, Denmark
R. H. PATIL
Affiliation:
Department of Agroecology, Aarhus University, Blichers Alle 20, P.O. Box 50, DK-8830 Tjele, Foulum, Denmark
L. ŞAYLAN
Affiliation:
Department of Meteorology, Faculty of Aeronautics and Astronautics, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
B. ÇALDAĞ
Affiliation:
Department of Meteorology, Faculty of Aeronautics and Astronautics, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
O. ÇAYLAK
Affiliation:
Department of Meteorology, Faculty of Aeronautics and Astronautics, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
*
*To whom all correspondence should be addressed. Email: josef.eitzinger@boku.ac.at

Summary

The objective of the present study was to compare the performance of seven different, widely applied crop models in predicting heat and drought stress effects. The study was part of a recent suite of model inter-comparisons initiated at European level and constitutes a component that has been lacking in the analysis of sources of uncertainties in crop models used to study the impacts of climate change. There was a specific focus on the sensitivity of models for winter wheat and maize to extreme weather conditions (heat and drought) during the short but critical period of 2 weeks after the start of flowering. Two locations in Austria, representing different agro-climatic zones and soil conditions, were included in the simulations over 2 years, 2003 and 2004, exhibiting contrasting weather conditions. In addition, soil management was modified at both sites by following either ploughing or minimum tillage. Since no comprehensive field experimental data sets were available, a relative comparison of simulated grain yields and soil moisture contents under defined weather scenarios with modified temperatures and precipitation was performed for a 2-week period after flowering. The results may help to reduce the uncertainty of simulated crop yields to extreme weather conditions through better understanding of the models’ behaviour. Although the crop models considered (DSSAT, EPIC, WOFOST, AQUACROP, FASSET, HERMES and CROPSYST) mostly showed similar trends in simulated grain yields for the different weather scenarios, it was obvious that heat and drought stress caused by changes in temperature and/or precipitation for a short period of 2 weeks resulted in different grain yields simulated by different models. The present study also revealed that the models responded differently to changes in soil tillage practices, which affected soil water storage capacity.

Type
Climate Change and Agriculture Research Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ainsworth, E. A. & Rogers, A. (2007). The response of photosynthesis and stomatal conductance on [CO2]: mechanisms and environmental interactions. Plant, Cell and Environment 30, 258270.CrossRefGoogle ScholarPubMed
Alexandrov, V. A., Eitzinger, J., Cajic, V. & Oberforster, M. (2002). Potential impact of climate change on selected agricultural crops in north-eastern Austria. Global Change Biology 8, 372389.CrossRefGoogle Scholar
Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. (1998). Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. Irrigation and Drainage Paper 56. Rome: UN-FAO.Google Scholar
Asseng, S., Foster, I. & Turner, N. C. (2011). The impact of temperature variability on wheat yields. Global Change Biology 17, 9971012.CrossRefGoogle Scholar
Boogaard, H. L., Van Diepen, C. A., Rötter, R. P., Cabrera, J. M. & Van Laar, H. H. (1998). User's Guide for the WOFOST 7.1 Crop Growth Simulation Model and Control Center 1.5. Wageningen, The Netherlands: Alterra, Wageningen UR.Google Scholar
Çaldağ, B. & Şaylan, L. (2005). Sensitivity analysis of the CERES-Wheat model for variations in CO2 and meteorological factors in northwest of Turkey. International Journal of Environment and Pollution 23, 300313.Google Scholar
Challinor, A. J., Wheeler, T., Hemming, D. & Upadhyaya, H. D. (2009). Ensemble yield simulations: crop and climate uncertainties, sensitivity to temperature and genotypic adaptation to climate change. Climate Research 38, 117127.CrossRefGoogle Scholar
Chatfield, C. (1995). Model uncertainty, data mining and statistical-inference. Journal of the Royal Statistical Society: Series A. Statistics in Society 158, 419466.CrossRefGoogle Scholar
Easterling, W. E., Aggarwal, P. K., Batima, P., Brander, K. M., Erda, L., Howden, S. M., Kirilenko, A., Morton, J., Soussana, J.-F., Schmidhuber, J. & Tubiello, F. N. (2007). Food, fibre and forest products. In Climate Change 2007: Impacts, Adaptation and Vulnerability, Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Eds Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. & Hanson, C. E.) pp. 273313. Cambridge, UK: Cambridge University Press.Google Scholar
Eitzinger, J., Stastná, M., Zalud, Z. & Dubrovsky, M. (2003). A simulation study of the effect of soil water balance and water stress on winter wheat production under different climate change scenarios. Agricultural Water Management 61, 195217.CrossRefGoogle Scholar
Eitzinger, J., Trnka, M., Hösch, J., Žalud, Z. & Dubrovský, M. (2004). Comparison of CERES, WOFOST and SWAP models in simulating soil water content during growing season under different soil conditions. Ecological Modelling 171, 223246.CrossRefGoogle Scholar
Eitzinger, J., Formayer, H., Thaler, S., Trnka, M., Zdenek, Z. & Alexandrov, V. (2008 a). Results and uncertainties of climate change impact research in agricultural crop production in Central Europe. Bodenkultur 59, 131147.Google Scholar
Eitzinger, J., Thaler, S., Orlandini, S., Nejedlik, P., Kazandjiev, V., Vucetic, V., Sivertsen, T. H., Mihailovic, D. T., Lalic, B., Tsiros, E., Dalezios, N. R., Susnik, A., Kersebaum, K. C., Holden, N. M. & Matthews, R. (2008 b). Agroclimatic indices and simulation models. In Survey of Agrometeorological Practices and Applications in Europe regarding Climate Change Impacts, Cost Action 734: Impact of Climate Change and Variability on European Agriculture (Eds Nejedlik, P. & Orlandini, S.), pp. 15114. Strasbourg Cedex, France: European Science Foundation.Google Scholar
Eitzinger, J., Orlandini, S., Stefanski, R. & Naylor, R. E. L. (2010). Climate change and agriculture: introductory editorial. Journal of Agricultural Science, Cambridge 148, 499500.CrossRefGoogle Scholar
Ewert, F., Rodriguez, D., Jamieson, P., Semenov, M. A., Mitchell, R. A. C., Goudriaan, J., Porter, J. R., Kimball, B. A., Pinter, P., Manderscheid, R., Weigel, H. J., Fangmeier, A., Fereres, E. & Villalobos, F. (2002). Effects of elevated CO2 and drought on wheat: Testing crop simulation models for different experimental and climatic conditions. Agriculture, Ecosystems and Environment 93, 249266.CrossRefGoogle Scholar
FAO-UNESCO (1988). Soil Map of the World, Revised Legend. Rome: FAO.Google Scholar
Finger, R., Hediger, W. & Schmid, S. (2011). Irrigation as adaptation strategy to climate change – a biophysical and economic appraisal for Swiss maize production. Climatic Change 105, 509528.CrossRefGoogle Scholar
Hlavinka, P., Eitzinger, J., Smutny, V., Thaler, S., Zalud, Z., Rischbeck, P. & Kren, J. (2010). The performance of CERES-Barley and CERES-Wheat under various soil conditions and tillage practices in Central Europe. Bodenkultur 61, 921.Google Scholar
Hoogenboom, G., Jones, J. W., Porter, C. H., Wilkens, P. W., Boote, K. J., Batchelor, W. D., Hunt, L. A. & Tsuji, G. Y. (2004). DSSAT 4.0 vol. 1, Overview. Honolulu, Hawaii: ICASA, University of Hawaii.Google Scholar
Hsiao, T. C., Heng, L., Steduto, P., Rojas-Lara, B., Raes, D. & Fereres, E. (2009). AquaCrop – the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy Journal 101, 448459.CrossRefGoogle Scholar
Iizumi, T., Yokozawa, M. & Nishimori, M. (2011). Probabilistic evaluation of climate change impacts on paddy rice productivity in Japan. Climatic Change 107, 391415.CrossRefGoogle Scholar
Iqbal, M. A., Bodner, G., Heng, L. K., Eitzinger, J. & Hassan, A. (2010). Assessing yield optimization and water reduction potential for summer-sown and spring-sown maize in Pakistan. Agricultural Water Management 97, 731737.CrossRefGoogle Scholar
Iqbal, M. A., Eitzinger, J., Formayer, H., Hassan, A. & Heng, L. K. (2011). A simulation study for assessing yield optimization and potential for water reduction for summer-sown maize under different climate change scenarios. Journal of Agricultural Science, Cambridge 149, 129143.CrossRefGoogle Scholar
Izaurralde, R. C., Williams, J. R., Mcgill, W. B., Rosenberg, N. J. & Quiroga Jakas, M. C. (2006). Simulating soil C dynamics with EPIC: Model description and testing against long-term data. Ecological Modelling 192, 362384.CrossRefGoogle Scholar
Jacobsen, B. H., Petersen, B. M., Berntsen, J., Boye, C., Sørensen, C. G., Søgaard, H. T. & Hansen, J. P. (1998). An Integrated Economic and Environmental Farm Simulation Model (FASSET). SJFI Report No. 102. Copenhagen, Denmark: Danish Institute of Agricultural and Fisheries Economics.Google Scholar
Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J. & Ritchie, J. T. (2003). The DSSAT cropping system model. European Journal of Agronomy 18, 235265.CrossRefGoogle Scholar
Kartschall, T., Grossman, S., Pinter, P. J. Jr., Garcia, R. L., Kimball, B. A., Wall, G. W., Hunsaker, D. J. & Lamorte, R. L. (1995). A simulation of phenology, growth, carbon dioxide exchange and yields under ambient atmosphere and free-air carbon dioxide enrichment (FACE) Maricopa, Arizona, for wheat. Journal of Biogeography 22, 611622.CrossRefGoogle Scholar
Kersebaum, K., Hecker, J. M., Mirschel, W. & Wegehenkel, M. (2007). Modelling water and nutrient dynamics in soil-crop systems: a comparison of simulation models applied on common data sets. In Modelling Water and Nutrient Dynamics in Soil-Crop Systems (Eds Kersebaum, K. C., Hecker, J. M. & Mirschel, W.), pp. 117. Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
Kersebaum, K. C. (2007). Modelling nitrogen dynamics in soil-crop systems with HERMES. Nutrient Cycling in Agroecosystems 77, 3952.CrossRefGoogle Scholar
Kersebaum, K. C. & Beblik, A. J. (2001). Performance of a nitrogen dynamics model applied to evaluate agricultural management practices. In Modeling Carbon and Nitrogen Dynamics for Soil Management (Eds Shaffer, M., Ma, L. & Hansen, S.), pp. 551571. Boca Raton, FL: CRC Press.Google Scholar
Kersebaum, K.-C., Nendel, C., Mirschel, W., Manderscheid, R., Weigel, H.-J. & Wenkel, K.-O. (2009). Testing different CO2 response algorithms against a face crop rotation experiment and application for climate change impact assessment at different sites in Germany. Idöjárás 113, 7988.Google Scholar
Kristensen, K., Schelde, K. & Olesen, J. E. (2011). Winter wheat yield response to climate variability in Denmark. Journal of Agricultural Science, Cambridge 149, 3347.CrossRefGoogle Scholar
Landau, S., Mitchell, R. A. C., Barnett, V., Colls, J. J., Craigon, J., Moore, K. L. & Payne, R. W. (1998). Testing winter wheat simulation models’ predictions against observed UK grain yields. Agricultural and Forest Meteorology 89, 8599.CrossRefGoogle Scholar
Lobell, D. B., Cassman, K. G. & Field, C. B. (2009). Crop yield gaps: their importance, magnitudes, and causes. Annual Review of Environment and Resources 34, 179204.CrossRefGoogle Scholar
Maracchi, G., Sirotenko, O. & Bindi, M. (2005). Impacts of present and future climate variability on agriculture and forestry in the temperate regions: Europe. Climatic Change 70, 117135.CrossRefGoogle Scholar
Mihailovic, D. T. & Eitzinger, J. (2007). Modelling temperatures of crop environment. Ecological Modelling 202, 465475.CrossRefGoogle Scholar
Monteith, J. L. & Unsworth, M. H. (1990). Principles of Environmental Physics. London: Elsevier.Google Scholar
Mori, M., Inagaki, M. N., Inoue, T., Nachit, M. M. (2011). Association of root water-uptake ability with drought adaptation in wheat. Cereal Research Communications 39, 551559.CrossRefGoogle Scholar
Moriondo, M., Giannakopoulos, C. & Bindi, M. (2011). Climate change impact assessment: the role of climate extremes in crop yield simulation. Climatic Change 104, 679701.CrossRefGoogle Scholar
Nendel, C., Kersebaum, K. C., Mirschel, W., Manderscheid, R., Weigel, H. J., Wenkel, K. O. (2009). Testing different CO2 response algorithms against a FACE crop rotation experiment. NJAS Wageningen Journal of Life Sciences 57, 1725.CrossRefGoogle Scholar
Nendel, C., Berg, M., Kersebaum, K. C., Mirschel, W., Specka, X., Wegehenkel, M., Wenkel, K. O. & Wieland, R. (2011). The Monica model: testing predictability for crop growth, soil moisture and nitrogen dynamics. Ecolological Modelling 222, 16141625.CrossRefGoogle Scholar
Nonhebel, S. (1993). The importance of weather data in crop growth simulation models and assessment of climate change effects. Ph.D. Thesis, Wageningen Agriculture University.Google Scholar
Olesen, J. E. & Bindi, M. (2004). Agricultural impacts and adaptations to climate change in Europe. Farm Policy Journal 1, 3646.Google Scholar
Olesen, J. E., Jørgensen, L. N. & Mortensen, J. V. (2000). Irrigation strategy, nitrogen application and fungicide control in winter wheat on a sandy soil. II. Radiation interception and conversion. Journal of Agricultural Science, Cambridge 134, 1323.CrossRefGoogle Scholar
Olesen, J. E., Berntsen, J., Hansen, E. M., Petersen, B. M. & Petersen, J. (2002 a). Crop nitrogen demand and canopy area expansion in winter wheat during vegetative growth. European Journal of Agronomy 16, 279296.CrossRefGoogle Scholar
Olesen, J. E., Petersen, B. M., Berntsen, J., Hansen, S., Jamieson, P. D. & Thomsen, A. G. (2002 b). Comparison of methods for simulating effects of nitrogen on green area index and dry matter growth in winter wheat. Field Crops Research 74, 131149.CrossRefGoogle Scholar
Orlandini, S., Nejedlik, P., Eitzinger, J., Alexandrov, V., Toulios, L., Calanca, P., Trnka, M. & Olesen, J. E. (2008). Impacts of climate change and variability on European agriculture: results of inventory analysis in COST 734 countries. Annals of the New York Academy of Sciences 1146, 338353.CrossRefGoogle ScholarPubMed
Palosuo, T., Kersebaum, K. C., Angulo, C., Hlavinka, P., Moriondo, M., Olesen, J. E., Patil, R. H., Ruget, F., Rumbaur, C., Takác, J., Trnka, M., Bindi, M., Çaldag, B., Ewert, F., Ferrise, R., Mirschel, W., Saylan, L., Siska, B. & Rötter, R. (2011). Simulation of winter wheat yield and its variability in different climates of Europe. A comparison of eight crop growth models. European Journal of Agronomy 35, 103114.CrossRefGoogle Scholar
Parry, M. L., Rosenzweig, C., Iglesias, A., Livermore, M. & Fischer, G. (2004). Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environmental Change 14, 5367.CrossRefGoogle Scholar
Patil, R. H., Laegdsmand, M., Olesen, J. E. & Porter, J. R. (2010). Growth and yield response of winter wheat to soil warming and rainfall patterns. Journal of Agricultural Science, Cambridge 148, 553566.CrossRefGoogle Scholar
Porter, C. H., Hoogenboom, G., Batchelor, W. D., Jones, J. W. & Gijsman, A. J. (2003). DSSAT v4·0 Crop Models: Overview of Changes Relative to DSSAT v3.5. Gainesville, FL: University of Florida.Google Scholar
Porter, J. R. & Gawith, M. (1999). Temperatures and the growth and development of wheat: a review. European Journal of Agronomy 10, 2336.CrossRefGoogle Scholar
Porter, J. R. & Semenov, M. A. (2005). Crop responses to climatic variation. Philosophical Transactions of the Royal Society B: Biological Sciences 360, 20212035.CrossRefGoogle ScholarPubMed
Prasad, P. V. V., Pisipati, S. R., Momcilovic, I. & Ristic, Z. (2011). Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. Journal of Agronomy and Crop Science 197(6), 430441.CrossRefGoogle Scholar
Prettenthaler, F., Podesser, A., Pilger, H. (eds.), (2010). Klimaatlas Steiermark: Periode 1971–2000; eine Anwenderorientierte Klimatographie. Studien zum Klimawandel in Österreich 4. Vienna: Austrian Academy of Sciences Press.Google Scholar
Raes, D., Steduto, P., Hsiao, T. C. & Fereres, E. (2009). AquaCrop – The FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agronomy Journal 101, 438447.CrossRefGoogle Scholar
Rischbeck, P. M. (2007). Der Einfluss von Klimaänderung, Bodenbearbeitung und Saattermin auf den Wasserhaushalt und das Ertragspotential von Getreide im Marchfeld. Ph.D. Thesis, University of Natural Resources and Life Sciences, Vienna, Austria.Google Scholar
Rosenzweig, C. & Wilbanks, T. J. (2010). The state of climate change vulnerability, impacts, and adaptation research: strengthening knowledge base and community. Climatic Change 100, 103106.CrossRefGoogle Scholar
Rötter, R. P., Carter, T. R., Olesen, J. E. & Porter, J. R. (2011). Crop-climate models need an overhaul. Nature Climate Change 1, 175177.CrossRefGoogle Scholar
Rötter, R. P., Palosuo, T., Kersebaum, K. C., Angulo, C., Bindi, M., Ewert, F., Ferrise, R., Hlavinka, P., Moriondo, M., Nendel, C., Olesen, J. E., Patil, R. H., Ruget, F., Tacak, J. & Trnka, M. (2012). Simulation of spring barley yield in different climatic zones of Northern and Central Europe. A comparison of nine crop models. Field Crops Research 133, 2336.CrossRefGoogle Scholar
Schmid, E., Sinabell, F. & Liebhard, P. (2004). Effects of reduced tillage systems and cover crops on sugar beet yield and quality, ground water recharge and nitrogen leaching in the Pannonic Region Marchfeld, Austria. Pflanzenbauwissenschaften 8, S.1S.9.Google Scholar
Semenov, M. A. & Porter, J. R. (1995). Climatic variability and the modelling of crop yields. Agricultural and Forest Meteorology 73, 265283.CrossRefGoogle Scholar
Semenov, M. A. & Shewry, P. R. (2011). Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Scientific Reports 1, Article no. 66. DOI: 10.1038/srep00066.CrossRefGoogle Scholar
Shah, N. H. & Paulsen, G. M. (2003). Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant and Soil 257, 219226.CrossRefGoogle Scholar
Smith, P. & Olesen, J. E. (2010). Synergies between the mitigation of, and adaptation to, climate change in agriculture. Journal of Agricultural Science, Cambridge 148, 543552.CrossRefGoogle Scholar
Soja, G., Eitzinger, J., Schneider, W. & Soja, A. M. (2005). Auswirkungen meteorologischer Extreme auf die Pflanzenproduktion in Österreich. In Gesellschaft für Pflanzenbauwissenschaften: 48. Jahrestagung d. Ges. f. Pflbw., 27–29 September, Wien, Mitteilungen der Gesellschaft für Pflanzenbauwissenschaften, Wasser und Pflanzenbau – Herausforderungen für zukünftige Produktionssysteme 17 (Eds Kämpf, A., Claupein, W., Graeff, S., Diepenbrock, W.), pp. 229230. Stuttgart: Heimbach.Google Scholar
Statistics Austria (2004). Statistik der Landwirtschaft 2003. Vienna: Statistik Österreich.Google Scholar
Statistics Austria (2005). Statistik der Landwirtschaft 2004. Vienna: Statistik Österreich.Google Scholar
Steduto, P., Hsiao, T. C., Raes, D. & Fereres, E. (2009). AquaCrop – The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal 101, 426437.CrossRefGoogle Scholar
Stockle, C. O., Donatelli, M. & Nelson, R. (2003). CropSyst, a cropping systems simulation model. European Journal of Agronomy 18, 289307.CrossRefGoogle Scholar
Tebaldi, C., Hayhoe, K., Arblaster, J. M. & Meehl, G. A. (2006). Going to the extremes: an intercomparison of model-simulated historical and future changes in extreme events. Climatic Change 79, 185211.CrossRefGoogle Scholar
Thaler, S., Eitzinger, J., Trnka, M. & Dubrovsky, M. (2012). Impacts of climate change and alternative adaptation options on winter wheat yield and water productivity in a dry climate in Central Europe. Journal of Agricultural Science, Cambridge 150, 537555.CrossRefGoogle Scholar
Timsina, J. & Humphreys, E. (2006). Performance of CERES-Rice and CERES-Wheat models in rice-wheat systems: a review. Agricultural Systems 90, 531.CrossRefGoogle Scholar
Todorovic, M., Albrizio, R., Zivotic, L., Abi Saab, M.-T., Stockle, C. & Steduto, P. (2009). Assessment of AquaCrop, CropSyst, and WOFOST models in the simulation of sunflower growth under different water regimes. Agronomy Journal 101, 509521.CrossRefGoogle Scholar
Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D., Klein Tank, A., Parker, D., Rahimzadeh, F., Renwick, J. A., Rusticucci, M., Soden, B. & Zhai, P. (2007). Observations: surface and atmospheric climate change. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Eds Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. & Miller, H. L.), pp. 237336. Cambridge, UK: Cambridge University Press.Google Scholar
Trnka, M., Dubrovsky, M., Semeradova, D. & Žalud, Z. (2004). Projections of uncertainties in climate change scenarios into expected winter wheat yields. Theoretical and Applied Climatology 77, 229249.CrossRefGoogle Scholar
Trnka, M., Žalud, Z., Eitzinger, J. & Dubrovský, M. (2005). Global solar radiation in Central European lowlands estimated by various empirical formulae. Agricultural and Forest Meteorology 131, 5476.CrossRefGoogle Scholar
Trnka, M., Eitzinger, J., Dubrovsky, M., Semeradova, D., Stepanek, P., Hlavinka, P., Balek, J., Skalak, P., Farda, A., Formayer, H. & Zalud, Z. (2010). Is rainfed crop production in central Europe at risk? Using a regional climate model to produce high resolution agroclimatic information for decision makers. Journal of Agricultural Science, Cambridge 148, 639656.CrossRefGoogle Scholar
Tubiello, F. N., Amthor, J. S., Boote, K. J., Donatelli, M., Easterling, W., Fischer, G., Gifford, R. M., Howden, M., Reilly, J. & Rosenzweig, C. (2007). Crop response to elevated CO2 and world food supply – A comment on “Food for Thought…” by Long et al., Science 312: 1918–1921, 2006. European Journal of Agronomy 26, 215223.CrossRefGoogle Scholar
Van Ittersum, M. K., Leffelaar, P. A., Van Keulen, H., Kropff, M. J., Bastiaans, L. & Goudriaan, J. (2003). On approaches and applications of the Wageningen crop models. European Journal of Agronomy 18, 201234.CrossRefGoogle Scholar
Vučetić, V. (2011). Modelling of maize production in Croatia: present and future climate. The Journal of Agricultural Science, Cambridge 149, 145157.CrossRefGoogle ScholarPubMed
White, J. W., Hoogenboom, G., Kimball, B. A. & Wall, G. W. (2011). Methodologies for simulating impact of climate change on crop production. Field Crops Research 124, 357368.CrossRefGoogle Scholar
Williams, J. R. (1995). The EPIC model, 1995. In Computer Models of Watershed Hydrology (Ed. Singh, V. P.), pp. 9091000. Highlands Ranch, CO: Water Resources Publications.Google Scholar
Williams, J. R., Jones, C. A. & Dyke, P. T. (1984). A modeling approach to determining the relationship between erosion and soil productivity. Transactions of the American Society of Agricultural Engineers 27, 129144.CrossRefGoogle Scholar
Wilson, K. B., Carlson, T. N. & Bunce, J. A. (1999). Feedback significantly influences the simulated effect of CO2 on seasonal evapotranspiration from two agricultural species. Global Change Biology 5, 903917.CrossRefGoogle Scholar
Wolf, J. (1993). Effects of climate change on wheat production potential in the European Community. European Journal of Agronomy 2, 281292.CrossRefGoogle Scholar
Wolf, J. & Van Diepen, C. A. (1994). Effects of climate change on silage maize production potential in the European Community. Agricultural and Forest Meteorology 71, 3360.CrossRefGoogle Scholar
Wolf, J. & Van Diepen, C. A. (1995). Effects of climate change on grain maize yield potential in the European Community. Climatic Change 29, 299331.CrossRefGoogle Scholar