Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-18T09:17:22.211Z Has data issue: false hasContentIssue false

Proteins of the malaria parasite sexual stages: expression, function and potential for transmission blocking strategies

Published online by Cambridge University Press:  23 August 2007

G. PRADEL*
Affiliation:
University of Würzburg, Research Center for Infectious Diseases, Röntgenring 11, 97070Würzburg, Germany
*
*Corresponding author. Tel: +49 931 312174. Fax: +49 931 312578. E-mail: gabriele.pradel@mail.uni-wuerzburg.de

Summary

The sexual phase of the malaria pathogen, Plasmodium falciparum, culminates in fertilization within the midgut of the mosquito and represents a crucial step in the completion of the parasite's life-cycle and transmission of the disease. Two decades ago, the first sexual stage-specific surface proteins were identified, among them Pfs230, Pfs48/45, and Pfs25, which were of scientific interest as candidates for the development of transmission blocking vaccines. A decade later, gene information gained from the sequencing of the P. falciparum genome led to the identification of numerous additional sexual-stage proteins with antigenic properties and novel enzymes that putatively possess regulatory functions during sexual-stage development. This review aims to summarize the sexual-stage proteins identified to date, to compare their stage specificities and expression patterns and to highlight novel regulative mechanisms of sexual differentiation. The prospective candidacy of select sexual-stage proteins as targets for transmission blocking strategies will be discussed.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alano, P. and Billker, O. (2005). Gametocytes and gametes. In Molecular Approaches to Malaria (ed. Sherman, I. W.), pp. 191219. ASM Press, Washington.Google Scholar
Alano, P., Premawansa, S., Bruce, M. C. and Carter, R. (1991). A stage specific gene expressed at the onset of gametocytogenesis in Plasmodium falciparum. Molecular and Biochemical Parasitology 46, 8188.Google Scholar
Alano, P., Read, D., Bruce, M., Aikawa, M., Kaido, T., Tegoshi, T., Bhatti, S., Smith, D. K., Luo, C., Hansra, S., Carter, R. and Elliott, J. F. (1995). COS cell expression cloning of Pfg377, a Plasmodium falciparum gametocyte antigen associated with osmiophilic bodies. Molecular and Biochemical Parasitology 74, 143156.CrossRefGoogle ScholarPubMed
Anamika, Srinivasan, N. and Krupa, A. (2005). A genomic perspective of protein kinases in Plasmodium falciparum. Proteins 58, 180189.CrossRefGoogle ScholarPubMed
Arakawa, T., Komesu, A., Otsuki, H., Sattabongkot, J., Udomsangpetch, R., Matsumoto, Y., Tsuji, N., Wu, Y., Torii, M. and Tsuboi, T. (2005). Nasal immunization with a malaria transmission-blocking vaccine candidate, P25, induces complete protective immunity in mice against field isolates of Plasmodium falciparum. Infection and Immunity 73, 73757380.Google Scholar
Baker, D. A., Daramola, O., McCrossan, M. V., Harmer, J. and Targett, G. A.& T. (1994). Subcellular localization of Pfs16, a Plasmodium falciparum gametocyte antigen. Parasitology 108, 129137.CrossRefGoogle ScholarPubMed
Barnes, D. A., Thompson, J., Triglia, T., Day, K. and Kemp, D. J. (1994). Mapping the genetic locus implicated in cytoadherence of Plasmodium falciparum to melanoma cells. Molecular and Biochemical Parasitology 66, 2129.CrossRefGoogle ScholarPubMed
Billker, O., Dechamps, S., Tewari, R., Wenig, G., Franke-Fayard, B. and Brinkmann, V. (2004). Calcium and a calcium-dependent protein kinase regulate gamete formation and mosquito transmission in a malaria parasite. Cell 117, 503514.CrossRefGoogle Scholar
Billker, O., Lindo, V., Panico, M., Etienne, A. E., Paxton, T., Dell, A., Rogers, M., Sinden, R. E. and Morris, H. R. (1998). Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito. Nature, London 392, 289292.CrossRefGoogle ScholarPubMed
Billker, O., Shaw, M. K., Margos, G. and Sinden, R. E. (1997). The roles of temperature, pH and mosquito factors as triggers of male and female gametogenesis of Plasmodium berghei in vitro. Parasitology. 115, 17.CrossRefGoogle ScholarPubMed
Brooks, S. R. and Williamson, K. C. (2000). Proteolysis of Plasmodium falciparum surface antigen, Pfs230, during gametogenesis. Molecular and Biochemical Parasitology 106, 7782.Google Scholar
Bruce, M. C., Carter, R. N., Nakamura, K., Aikawa, M. and Carter, R. (1994). Cellular location and temporal expression of Plasmodium falciparum sexual stage antigen Pfs16. Molecular and Biochemical Parasitology 65, 1122.Google Scholar
Bustamante, P. J., Woodruff, D. C., Oh, J., Keister, D. B., Muratova, O. and Williamson, K. C. (2000). Differential ability of specific regions of Plasmodium falciparum sexual-stage antigen, Pfs230, to induce malaria transmission-blocking immunity. Parasite Immunology 22, 373380.Google Scholar
Carlton, J. M., Angiuoli, S. V., Suh, B. B., Kooij, T. W., Pertea, M., Silva, J. C., Ermolaeva, M. D., Allen, J. E., Selengut, J. D., Koo, H. L., Peterson, J. D., Pop, M., Kosack, D. S., Shumway, M. F., Bidwell, S. L., Shallom, S. J., van Aken, S. E., Riedmuller, S. B., Feldblyum, T. V., Cho, J. K., Quackenbush, J., Sedegah, M., Shoaibi, A., Cummings, L. M., Florens, L., Yates, J. R., Raine, J. D., Sinden, R. E., Harris, M. A., Cunningham, D. A., Preiser, P. R., Bergman, L. W., Vaidya, A. B., van Lin, L. H., Janse, C. J., Waters, A. P., Smith, H. O., White, O. R., Salzberg, S. L., Venter, J. C., Fraser, C. M., Hoffman, S. L., Gardner, M. J. and Carucci, D. J. (2002). Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature, London 419, 512519.CrossRefGoogle ScholarPubMed
Carter, R. (2001). Transmission blocking malaria vaccines. Vaccine 19, 23092314.Google Scholar
Carter, R. and Chen, D. H. (1976). Malaria transmission blocked by immunisation with gametes of the malaria parasite. Nature, London 263, 5760.CrossRefGoogle ScholarPubMed
Carter, R., Coulson, A., Bhatti, S., Taylor, B. J. and Elliott, J. F. (1995). Predicted disulfide-bonded structures for three uniquely related proteins of Plasmodium falciparum, Pfs230, Pfs48/45 and Pf12. Molecular and Biochemical Parasitology 71, 203210.CrossRefGoogle ScholarPubMed
Carter, R., Graves, P. M., Creasey, A., Byrne, K., Read, D., Alano, P. and Fenton, B. (1989). Plasmodium falciparum: an abundant stage-specific protein expressed during early gametocyte development. Experimental Parasitology 69, 140149.Google Scholar
Carter, R., Mendis, K. N., Miller, L. H., Molineaux, L. and Saul, A. (2000). Malaria transmission-blocking vaccines–how can their development be supported? Nature Medicine 6, 241244.Google Scholar
Carucci, D. J., Witney, A. A., Muhia, D. K., Warhurst, D. C., Schaap, P., Meima, M., Li, J. L., Taylor, M. C., Kelly, J. M. and Baker, D. A. (2000). Guanylyl cyclase activity associated with putative bifunctional integral membrane proteins in Plasmodium falciparum. Journal of Biological Chemistry 275, 2214722156.CrossRefGoogle ScholarPubMed
Catteruccia, F. (2007). Malaria vector control in the third millennium: progress and perspectives of molecular approaches. Pest Management Science 63, 634640.CrossRefGoogle ScholarPubMed
Claudianos, C., Dessens, J. T., Trueman, H. E., Arai, M., Mendoza, J., Butcher, G. A., Crompton, T. and Sinden, R. E. (2002). A malaria scavenger receptor-like protein essential for parasite development. Molecular Microbiology 45, 14731484.CrossRefGoogle ScholarPubMed
Creasey, A., Mendis, K., Carlton, J., Williamson, D., Wilson, I. and Carter, R. (1994). Maternal inheritance of extrachromosomal DNA in malaria parasites. Molecular and Biochemical Parasitology 65, 9598.CrossRefGoogle ScholarPubMed
Day, K. P., Karamalis, F., Thompson, J., Barnes, D. A., Peterson, C., Brown, H., Brown, G. V. and Kemp, D. J. (1993). Genes necessary for expression of a virulence determinant and for transmission of Plasmodium falciparum are located on a 0.3-megabase region of chromosome 9. Proceedings of the National Academy of Sciences, USA 90, 82928296.CrossRefGoogle ScholarPubMed
Delrieu, I., Waller, C. C., Mota, M. M., Grainger, M., Langhorne, J. and Holder, A. A. (2001). PSLAP, a protein with multiple adhesive motifs, is expressed in Plasmodium falciparum gametocytes. Molecular and Biochemical Parasitology 121, 1120.Google Scholar
Dessens, J. T., Beetsma, A. L., Dimopoulos, G., Wengelnik, K., Crisanti, A., Kafatos, F. C. and Sinden, R. E. (1999). CTRP is essential for mosquito infection by malaria ookinetes. EMBO Journal 18, 62216227.CrossRefGoogle ScholarPubMed
Dessens, J. T., Mendoza, J., Claudianos, C., Vinetz, J. M., Khater, E., Hassard, S., Ranawaka, G. R. and Sinden, R. E. (2001). Knockout of the rodent malaria parasite chitinase pbCHT1 reduces infectivity to mosquitoes. Infection and Immunity 69, 40414047.Google Scholar
Dessens, J. T., Siden-Kiamos, I., Mendoza, J., Mahairaki, V., Khater, E., Vlachou, D., Xu, X. J., Kafatos, F. C., Louis, C., Dimopoulos, G. and Sinden, R. E. (2003). SOAP, a novel malaria ookinete protein involved in mosquito midgut invasion and oocyst development. Molecular Microbiology 49, 319329.CrossRefGoogle ScholarPubMed
Dessens, J. T., Sinden, R. E. and Claudianos, C. (2004). LCCL proteins of apicomplexan parasites. Trends in Parasitology 20, 102108.Google Scholar
van Dijk, M. R., Douradinha, B., Franke-Fayard, B., Heussler, V., van Dooren, M. W., van Schaijk, B., van Gemert, G. J., Sauerwein, R. W., Mota, M. M., Waters, A. P. and Janse, C. J. (2005). Genetically attenuated, P36p-deficient malarial sporozoites induce protective immunity and apoptosis of infected liver cells. Proceedings of the National Academy of Sciences, USA 102, 1219412199.Google Scholar
van Dijk, M. R., Janse, C. J., Thompson, J., Waters, A. P., Braks, J. A., Dodemont, H. J., Stunnenberg, H. G., van Gemert, G. J., Sauerwein, R. W. and Eling, W. (2001). A central role for P48/45 in malaria parasite male gamete fertility. Cell 104, 153164.Google Scholar
Doerig, C. (2004). Protein kinases as targets for anti-parasitic chemotherapy. Biochimica et Biophysica Acta 1697, 155168.CrossRefGoogle ScholarPubMed
Doerig, C., Billker, O., Pratt, D. and Endicott, J. (2005). Protein kinases as targets for antimalarial intervention: Kinomics, structure-based design, transmission-blockade, and targeting host cell enzymes. Biochimica et Biophysica Acta 1754, 132150.CrossRefGoogle ScholarPubMed
Dorin, D., Alano, P., Boccaccio, I., Ciceron, L., Doerig, C., Sulpice, R., Parzy, D. and Doerig, C. (1999). An atypical mitogen-activated protein kinase (MAPK) homologue expressed in gametocytes of the human malaria parasite Plasmodium falciparum. Identification of a MAPK signature. Journal of Biological Chemistry 274, 2991229920.CrossRefGoogle ScholarPubMed
Dorin, D., Le Roch, K., Sallicandro, P., Alano, P., Parzy, D., Poullet, P., Meijer, L. and Doerig, C. (2001). Pfnek-1, a NIMA-related kinase from the human malaria parasite Plasmodium falciparum Biochemical properties and possible involvement in MAPK regulation. European Journal of Biochemistry 268, 26002608.Google Scholar
Duffy, P. E. and Kaslow, D. C. (1997). A novel malaria protein, Pfs28, and Pfs25 are genetically linked and synergistic as falciparum malaria transmission-blocking vaccines. Infection and Immunity 65, 11091113.CrossRefGoogle ScholarPubMed
Ecker, A., Pinto, S. B., Baker, K. W., Kafatos, F. C. and Sinden, R. E. (2007). Plasmodium berghei: Plasmodium perforin-like protein 5 is required for mosquito midgut invasion in Anopheles stephensi. Experimental Parasitology 116, 504508.CrossRefGoogle ScholarPubMed
Eksi, S., Czesny, B., van Gemert, G. J., Sauerwein, R. W., Eling, W. and Williamson, K. C. (2006). Malaria transmission-blocking antigen, Pfs230, mediates human red blood cell binding to exflagellating male parasites and oocyst production. Molecular Microbiology 61, 991998.CrossRefGoogle ScholarPubMed
Eksi, S., Czesny, B., van Gemert, G. J., Sauerwein, R. W., Eling, W. and Williamson, K. C. (2007). Inhibition of Plasmodium falciparum oocyst production by membrane-permeant cysteine protease inhibitor E64d. Antimicrobial Agents and Chemotherapy 51, 10641070.CrossRefGoogle ScholarPubMed
Eksi, S., Czesny, B., Greenbaum, D. C., Bogyo, M. and Williamson, K. C. (2004). Targeted disruption of Plasmodium falciparum cysteine protease, falcipain 1, reduces oocyst production, not erythrocytic stage growth. Molecular Microbiology 53, 243250.CrossRefGoogle Scholar
Eksi, S., Haile, Y., Furuya, T., Ma, L., Su, X. and Williamson, K. C. (2005). Identification of a subtelomeric gene family expressed during the asexual-sexual stage transition in Plasmodium falciparum. Molecular and Biochemical Parasitology 143, 9099.CrossRefGoogle ScholarPubMed
Eksi, S. and Williamson, K. C. (2002). Male-specific expression of the paralog of malaria transmission-blocking target antigen Pfs230, PfB0400w. Molecular and Biochemical Parasitology 122, 127130.CrossRefGoogle ScholarPubMed
Fanning, S. L., Czesny, B., Sedegah, M., Carucci, D. J., van Gemert, G. J., Eling, W. and Williamson, K. C. (2003). A glycosylphosphatidylinositol anchor signal sequence enhances the immunogenicity of a DNA vaccine encoding Plasmodium falciparum sexual-stage antigen, Pfs230. Vaccine 21, 32283325.Google Scholar
Feng, Z., Hoffmann, R. N., Nussenzweig, R. S., Tsuji, M., Fujioka, H., Aikawa, M., Lensen, T. H., Ponnudurai, T. and Pologe, L. G. (1993). Pfs2400 can mediate antibody-dependent malaria transmission inhibition and may be the Plasmodium falciparum 11.1 gene product. Journal of Experimental Medicine 177, 273281.CrossRefGoogle ScholarPubMed
Florens, L., Washburn, M. P., Raine, J. D., Anthony, R. M., Grainger, M., Haynes, J. D., Moch, J. K., Muster, N., Sacci, J. B., Tabb, D. L., Witney, A. A., Wolters, D., Wu, Y., Gardner, M. J., Holder, A A., Sinden, R. E., Yates, J. R. and Carucci, D. J. (2002). A proteomic view of the Plasmodium falciparum life cycle. Nature, London 419, 520526.CrossRefGoogle ScholarPubMed
Furuya, T., Mu, J., Hayton, K., Liu, A., Duan, J., Nkrumah, L., Joy, D. A., Fidock, D. A., Fujioka, H., Vaidya, A. B., Wellems, T. E. and Su, X. Z. (2005). Disruption of a Plasmodium falciparum gene linked to male sexual development causes early arrest in gametocytogenesis. Proceedings of the National Academy of Sciences, USA 102, 1681316818.Google Scholar
Garcia, G. E., Wirtz, R. A., Barr, J. R., Woolfitt, A. and Rosenberg, R. (1998). Xanthurenic acid induces gametogenesis in Plasmodium, the malaria parasite. Journal of Biological Chemistry 273, 1200312005.CrossRefGoogle ScholarPubMed
Gardiner, D. L., Dixon, M. W., Spielmann, T., Skinner-Adams, T. S., Hawthorne, P. L., Ortega, M. R., Kemp, D. J. and Trenholme, K. R. (2005). Implication of a Plasmodium falciparum gene in the switch between asexual reproduction and gametocytogenesis. Molecular and Biochemical Parasitology 140, 153160.CrossRefGoogle ScholarPubMed
Gardner, M. J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R. W., Carlton, J. M., Pain, A., Nelson, K. E., Bowman, S., Paulsen, I. T., James, K., Eisen, J. A., Rutherford, K., Salzberg, S. L., Craig, A., Kyes, S., Chan, M. S., Nene, V., Shallom, S. J., Suh, B., Peterson, J., Angiuoli, S., Pertea, M., Allen, J., Selengut, J., Haft, D., Mather, M. W., Vaidya, A. B., Martin, D. M., Fairlamb, A. H., Fraunholz, M. J., Roos, D. S., Ralph, S. A., McFadden, G. I., Cummings, L. M., Subramanian, G. M., Mungall, C., Venter, J. C., Carucci, D. J., Hoffman, S. L., Newbold, C., Davis, R. W., Fraser, C. M. and Barrell, B. (2002). Genome sequence of the human malaria parasite Plasmodium falciparum. Nature, London 419, 498511.CrossRefGoogle ScholarPubMed
Gerloff, D. L., Creasey, A., Maslau, S. and Carter, R. (2005). Structural models for the protein family characterized by gamete surface protein Pfs230 of Plasmodium falciparum. Proceedings of the National Academy of Sciences, USA 102, 1359813603.CrossRefGoogle ScholarPubMed
Gwadz, R. W. (1976). Successful immunization against the sexual stages of Plasmodium gallinaceum. Science 193, 11501151.Google Scholar
Haddad, D., Maciel, J. and Kumar, N. (2006). Infection with Plasmodium berghei boosts antibody responses primed by a DNA vaccine encoding gametocyte antigen Pbs48/45. Infection and Immunity 74, 20432051.Google Scholar
Hall, N., Karras, M., Raine, J. D., Carlton, J. M., Kooij, T. W., Berriman, M., Florens, L., Janssen, C. S., Pain, A., Christophides, G. K., James, K., Rutherford, K., Harris, B., Harris, D., Churcher, C., Quail, M. A., Ormond, D., Doggett, J., Trueman, H. E., Mendoza, J., Bidwell, S. L., Rajandream, M. A., Carucci, D. J., Yates, J. R. 3rd, Kafatos, F. C., Janse, C. J., Barrell, B., Turner, C. M., Waters, A. P. and Sinden, R. E. (2005). A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science 307, 8286.CrossRefGoogle ScholarPubMed
Hawking, F., Wilson, M. E. and Gammage, K. (1971). Evidence for cyclic development and short-lived maturity in the gametocytes of Plasmodium falciparum. Transactions of the Royal Society of Tropical Medicine and Hygiene 65, 549559.Google Scholar
Healer, J., McGuinness, D., Carter, R. and Riley, E. (1999). Transmission-blocking immunity to Plasmodium falciparum in malaria-immune individuals is associated with antibodies to the gamete surface protein Pfs230. Parasitology 119, 425433.CrossRefGoogle Scholar
Hirai, M., Arai, M., Kawai, S. and Matsuoka, H. (2006). PbGCbeta is essential for Plasmodium ookinete motility to invade midgut cell and for successful completion of parasite life cycle in mosquitoes. Journal of Biochemistry (Tokyo) 140, 747757.CrossRefGoogle ScholarPubMed
Hisaeda, H., Stowers, A. W., Tsuboi, T., Collins, W. E., Sattabongkot, J. S., Suwanabun, N., Torii, M. and Kaslow, D. C. (2000). Antibodies to malaria vaccine candidates Pvs25 and Pvs28 completely block the ability of Plasmodium vivax to infect mosquitoes. Infection and Immunity 68, 66186623.Google Scholar
Ishino, T., Orito, Y., Chinzei, Y. and Yuda, M. (2006). A calcium-dependent protein kinase regulates Plasmodium ookinete access to the midgut epithelial cell. Molecular Microbiology 59, 11751184.CrossRefGoogle Scholar
Janse, C. J., van der Klooster, P. F., van der Kaay, H. J., van der Ploeg, M. and Overdulve, J. P. (1986). DNA synthesis in Plasmodium berghei during asexual and sexual development. Molecular and Biochemical Parasitology 20, 173182.CrossRefGoogle ScholarPubMed
Janse, C. J., Ponnudurai, T., Lensen, A. H., Meuwissen, J. H., Ramesar, J., van der Ploeg, M. and Overdulve, J. P. (1988). DNA synthesis in gametocytes of Plasmodium falciparum. Parasitology 96, 17.Google Scholar
Kadota, K., Ishino, T., Matsuyama, T., Chinzei, Y. and Yuda, M. (2004). Essential role of membrane-attack protein in malarial transmission to mosquito host. Proceedings of the National Academy of Sciences, USA 101, 1631016315.CrossRefGoogle ScholarPubMed
Kariu, T., Ishino, T., Yano, K., Chinzei, Y. and Yuda, M. (2006). CelTOS, a novel malarial protein that mediates transmission to mosquito and vertebrate host. Molecular Microbiology 59, 13691379.CrossRefGoogle Scholar
Kaslow, D. C. (2002). Transmission-blocking vaccines. Chemical Immunology 80, 287307.Google Scholar
Kaslow, D. C., Quakyi, I. A., Syin, C., Raum, M. G., Keister, D. B., Coligan, J. E., McCutchan, T. F. and Miller, L. H. (1988). A vaccine candidate from the sexual stage of human malaria that contains EGF-like domains. Nature, London 333, 7476.Google Scholar
Kawamoto, F., Alejo-Blanco, R., Fleck, S. L., Kawamoto, Y. and Sinden, R. E. (1990). Possible roles of Ca2+ and cGMP as mediators of the exflagellation of Plasmodium berghei and Plasmodium falciparum. Molecular and Biochemical Parasitology 42, 101108.Google Scholar
Kawamoto, F., Fujioka, H., Murakami, R., Syafruddin, , Hagiwara, M., Ishikawa, T. and Hidaka, H. (1993). The roles of Ca2+/calmodiulin- and cGMP-dependent pathways in gametognesis of a rodent malaria parasite, Plasmodium berghei. European Journal of Cell Biology 60, 101107.Google ScholarPubMed
Khan, S. M., Franke-Fayard, B., Mair, G. R., Lasonder, E., Janse, C. J., Mann, M. and Waters, A. P. (2005). Proteome analysis of separated male and female gametocytes reveals novel sex-specific Plasmodium biology. Cell 121, 675687.Google Scholar
Kongkasuriyachai, D., Fujioka, H. and Kumar, N. (2004). Functional analysis of Plasmodium falciparum parasitophorous vacuole membrane protein (Pfs16) during gametocytogenesis and gametogenesis by targeted gene disruption. Molecular and Biochemical Parasitology 133, 275285.CrossRefGoogle ScholarPubMed
Kumar, N. (1987). Target antigens of malaria transmission blocking immunity exist as a stable membrane bound complex. Parasite Immunology 9, 321335.CrossRefGoogle ScholarPubMed
Kumar, N. (1997). Protein phosphorylation during sexual differentiation in the malaria parasite Plasmodium falciparum. Molecular and Biochemical Parasitology 87, 205210.Google Scholar
Kumar, N. and Wizel, B. (1992). Further characterization of interactions between gamete surface antigens of Plasmodium falciparum. Molecular and Biochemical Parasitology 53, 113120.Google Scholar
Lanfrancotti, A., Bertuccini, L., Silvestrini, F. and Alano, P. (2007). Plasmodium falciparum: mRNA co-expression and protein co-localisation of two gene products upregulated in early gametocytes. Experimental Parasitology 116, 497503.Google Scholar
Langer, R. C., Hayward, R E., Tsuboi, T., Tachibana, M., Torii, M. and Vinetz, J. M. (2000). Micronemal transport of Plasmodium ookinete chitinases to the electron-dense area of the apical complex for extracellular secretion. Infection and Immunity 68, 64616465.Google Scholar
Lasonder, E., Ishihama, Y., Andersen, J. S., Vermunt, A. M., Pain, A., Sauerwein, R. W., Eling, W. M., Hall, N., Waters, A. P., Stunnenberg, H. G. and Mann, M. (2002). Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature, London 419, 537542.CrossRefGoogle ScholarPubMed
Lavazec, C., Bonnet, S., Thiery, I., Boisson, B. and Bourgouin, C. (2005). cpbAg1 encodes an active carboxypeptidase B expressed in the midgut of Anopheles gambiae. Insect Molecular Biology 14, 163174.CrossRefGoogle ScholarPubMed
Lavazec, C., Boudin, C., Lacroix, R., Bonnet, S., Diop, A., Thiberge, S., Boisson, B., Tahar, R. and Bourgouin, C. (2007). Carboxypeptidases B of Anopheles gambiae as targets for a Plasmodium falciparum transmission-blocking vaccine. Infection and Immunity 75, 16351642.CrossRefGoogle ScholarPubMed
Lensen, A., Bril, A., van de Vegte, M., van Gemert, G. J., Eling, W. and Sauerwein, R. (1999). Plasmodium falciparum: infectivity of cultured, synchronized gametocytes to mosquitoes. Experimental Parasitology 91, 101103.Google Scholar
Li, F., Templeton, T. J., Popov, V., Comer, J. E., Tsuboi, T., Torii, M. and Vinetz, J. M. (2004). Plasmodium ookinete-secreted proteins secreted through a common micronemal pathway are targets of blocking malaria transmission. Journal of Biological Chemistry 279, 2663526644.CrossRefGoogle ScholarPubMed
Li, F., Patra, K. P. and Vinetz, J. M. (2005). An anti-chitinase malaria transmission-blocking single-chain antibody as an effector molecule for creating a Plasmodium falciparum-refractory mosquito. Journal of Infection and Diseases 192, 878887.Google Scholar
Linares, G. E. and Rodriguez, J. B. (2007). Current status and progresses made in malaria chemotherapy. Current Medicinal Chemistry 14, 289314.Google Scholar
Lobo, C. A., Konings, P. N.& H. and Kumar, N. (1994). Expression of early gametocyte-stage antigens Pfg27 and Pfs16 in synchronized gametocytes and non-gametocyte producing clones of Plasmodium falciparum. Molecular and Biochemical Parasitology 68, 151154.Google Scholar
Lobo, C. A., Fujioka, H., Aikawa, M. and Kumar, N. (1999). Disruption of the Pfg27 locus by homologous recombination leads to loss of the sexual phenotype in P. falciparum. Molecular Cell 3, 793798.Google Scholar
Lye, Y. M., Chan, M. and Sim, T. S. (2006). Pfnek3: an atypical activator of a MAP kinase in Plasmodium falciparum. FEBS Letters 580, 60836092.CrossRefGoogle ScholarPubMed
Mair, G. R., Braks, J. A., Garver, L. S., Wiegant, J. C., Hall, N., Dirks, R. W., Khan, S. M., Dimopoulos, G., Janse, C. J. and Waters, A. P. (2006). Regulation of sexual development of Plasmodium by translational repression. Science 313, 667669.CrossRefGoogle ScholarPubMed
Malkin, E M., Durbin, A. P., Diemert, D. J., Sattabongkot, J., Wu, Y., Miura, K., Long, C. A., Lambert, L., Miles, A..P, Wang, J., Stowers, A., Miller, L. H. and Saul, A. (2005). Phase 1 vaccine trial of Pvs25H: a transmission blocking vaccine for Plasmodium vivax malaria. Vaccine 23, 31313138.Google Scholar
Martin, S. K., Jett, M. and Schneider, I. (1994). Correlation of phosphoinositide hydrolysis with exflagellation in the malaria microgametocyte. Journal of Parasitology 180, 371378.Google Scholar
Moelans, I. I., Meis, J. F., Kocken, C., Konings, R. N. and Schoenmakers, J. G. (1991). A novel protein antigen of malaria parasite Plasmodium falciparum, located on the surface of gametes and sporozoites. Molecular and Biochemical Parasitology 45, 193204.CrossRefGoogle ScholarPubMed
Muhia, D. K., Swales, C. A., Deng, W., Kelly, J. M. and Baker, D. A. (2001). The gametocyte-activating factor xanthurenic acid stimulates an increase in membrane-associated guanylyl cyclase activity in the human malaria parasite Plasmodium falciparum. Molecular Microbiology 42, 553560.CrossRefGoogle ScholarPubMed
Nijhout, M. M. (1979). Plasmodium gallinaceum: exflagellation stimulated by a mosquito factor. Experimental Parasitology 148, 7580.Google Scholar
Nijhout, M. M. and Carter, R. (1978). Gamete development in malaria parasites: bicarbonate-dependent stimulation by pH in vitro. Parasitology 76, 3953.Google Scholar
O'Donnell, R. A. and Blackman, M. J. (2005). The role of malaria merozoite proteases in red blood cell invasion. Current Opinion in Microbiology 8, 422427.Google Scholar
Outchkourov, N., Vermunt, A., Jansen, J., Kaan, A., Roeffen, W., Teelen, K., Lasonder, E., Braks, A., van de Vegte-Bolmer, M., Qiu, L. Y., Sauerwein, R. and Stunnenberg, H. G. (2007). Epitope analysis of the malaria surface antigen PFS48/45 identifies a subdomain that elicits transmission blocking antibodies. Journal of Biological Chemistry 282, 1714817156.Google Scholar
Pace, T., Olivieri, A., Sanchez, M., Albanesi, V., Picci, L., Siden Kiamos, I., Janse, C. J., Waters, A. P., Pizzi, E. and Ponzi, M. (2006). Set regulation in asexual and sexual Plasmodium parasites reveals a novel mechanism of stage-specific expression. Molecular Microbiology 60, 870882.Google Scholar
Pradel, G. and Templeton, T. J. (2005). Genomics of pathogenic parasites. In Pathogenomics – Genome Analysis of Pathogenic Microbes (ed. Dobrindt, U. and Hacker, J. H.), pp. 417444. Wiley-VCH, Weinheim, Germany.Google Scholar
Pradel, G., Hayton, K., Aravind, L., Iyer, L., Abrahamsen, M. S., Bonawitz, A., Mejia, C. and Templeton, T. J. (2004). A multi-domain adhesion protein family expressed in Plasmodium falciparum gametocytes is essential for sporozoite midgut to salivary gland transition. Journal of Experimental Medicine 199, 15331544.Google Scholar
Pradel, G., Wagner, C., Mejia, C. and Templeton, T. J. (2006). Plasmodium falciparum: Co-dependent expression and co-localization of the PfCCp multi-adhesion domain proteins. Experimental Parasitology 112, 263268.CrossRefGoogle ScholarPubMed
Quakyi, I. A., Carter, R., Rener, J., Kumar, N., Good, M. F. and Miller, L. H. (1987). The 230-kDa gamete surface protein of Plasmodium falciparum is also a target for transmission-blocking antibodies. Journal of Immunology 139, 42134217.Google Scholar
Raine, J. D., Ecker, A., Mendoza, J., Tewari, R., Stanway, R. R. and Sinden, R. E. (2007). Female inheritance of malarial lap genes is essential for mosquito transmission. PLoS Pathogen 3, e30.Google Scholar
Rangarajan, R., Bei, A. K., Jethwaney, D., Maldonado, P., Dorin, D., Sultan, A. A. and Doerig, C. (2005). A mitogen-activated protein kinase regulates male gametogenesis and transmission of the malaria parasite Plasmodium berghei. EMBO Report 6, 464469.Google Scholar
Rawlings, D. J., Fujioka, H., Fried, M., Keister, D. B., Aikawa, M. and Kaslow, D. C. (1992). Alpha-tubulin II is a male-specific protein in Plasmodium falciparum. Molecular and Biochemical Parasitology 56, 239250.Google Scholar
Read, D., Lensen, A. H., Begarnie, S., Haley, S., Raza, A. and Carter, R. (1994). Transmission-blocking antibodies against multiple, non-variant target epitopes of the Plasmodium falciparum gamete surface antigen Pfs230 are all complement-fixing. Parasite Immunology 16, 5115151159.CrossRefGoogle ScholarPubMed
Reininger, L., Billker, O., Tewari, R., Mukhopadhyay, A., Fennell, C., Dorin-Semblat, D., Doerig, C., Goldring, D., Harmse, L., Ranford-Cartwright, L., Packer, J. and Doerig, C. (2005). A NIMA-related protein kinase is essential for completion of the sexual cycle of malaria parasites. Journal of Biological Chemistry 280, 19571964.CrossRefGoogle ScholarPubMed
Rener, J., Graves, P. M., Carter, R., Williams, J. L. and Burkot, T. R. (1983). Target antigens of transmission blocking immunity on gametes of Plasmodium falciparum. Journal of Experimental Medicine 158, 976981.Google Scholar
Rodriguez, M. DEL C., Martinez-Barnetche, J., Alvarado-Delgado, A., Batista, C., Argotte-Ramos, R. S., Hernandez-Martinez, S., Gonzalez Ceron, L., Torres, J. A., Margos, G. and Rodriguez, M. H. (2007). The surface protein Pvs25 of Plasmodium vivax ookinetes interacts with calreticulin on the midgut apical surface of the malaria vector Anopheles albimanus. Molecular and Biochemical Parasitology 153, 167177.Google Scholar
Rogers, N. J., Hall, B. S., Obiero, J., Targets, G. A.& T. and Sutherland, C. J. (2000). A model for sequestration of the transmission stages of Plasmodium falciparum: Adhesion of gametocyte-infected erythrocytes to human bone marrow cells. Infection and Immunity 68, 34553462.Google Scholar
Rosenthal, P. J. (2002). Hydrolysis of erythrocyte proteins by proteases of malaria parasites. Current Opinion in Hematology 9, 140145.Google Scholar
Rosenthal, P. J. (2004). Cysteine proteases of malaria parasites. International Journal for Parasitology 34, 14891499.Google Scholar
Sargeant, T. J., Marti, M., Caler, E., Carlton, J. M., Simpson, K., Speed, T. P. and Cowman, A. F. (2006). Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites. Genome Biology 7, R12.Google Scholar
van Schaijk, B. C.& L., van Dijk, M. R., van de Vegte-Bolmer, M., van Gemert, G.-J., van Dooren, M. W., Eksi, S., Roeffen, W. F.& G., Janse, C. J., Waters, A. P. and Sauerwein, R. W. (2006). Pfs47, paralog of the male fertility factor Pfs48/45, is a female specific surface protein in Plasmodium falciparum. Molecular and Biochemical Parasitology 149, 216222.CrossRefGoogle ScholarPubMed
Scherf, A., Carter, R., Petersen, C., Alano, P., Nelson, R., Aikawa, M., Mattei, D., Pereira da Silva, L. and Leech, J. (1992). Gene inactivation of Pf11–1 of Plasmodium falciparum by chromosome breakage and healing: identification of a gametocyte-specific protein with a potential role in gametogenesis. EMBO Journal 11, 22932301.Google Scholar
Severini, C., Silvestrini, F., Sannella, A., Barca, S., Gradoni, L. and Alano, P. (1999). The production of the osmiophilic body protein Pfg377 is associated with stage of maturation and sex in Plasmodium falciparum gametocytes. Molecular and Biochemical Parasitology 100, 247252.Google Scholar
Sharma, A., Sharma, I., Kogkasuriyachai, D. and Kumar, N. (2003). Structure of a gametocyte protein essential for sexual development in Plasmodium falciparum. Nature Structural Biology 10, 197203.Google Scholar
Siden-Kiamos, I., Ecker, A., Nyback, S., Louis, C., Sinden, R. E. and Billker, O. (2006). Plasmodium berghei calcium-dependent protein kinase 3 is required for ookinete gliding motility and mosquito midgut invasion. Molecular Microbiology 60, 13551363.Google Scholar
Silvestrini, F., Alano, P. and Williams, J. L. (2000). Commitment to the production of male and female gametocytes in the human malaria parasite Plasmodium falciparum. Parasitology 121, 465471.Google Scholar
Silvestrini, F., Bozdech, Z., Lanfrancotti, A., Di Giulio, E., Bultrini, E., Picci, L., deRisi, J. L., Pizzi, E. and Alano, P. (2005). Genome-wide identification of genes upregulated at the onset of gametocytogenesis in Plasmodium falciparum. Molecular and Biochemical Parasitology 143, 100110.CrossRefGoogle ScholarPubMed
Sinden, R. E. (1982). Gametocytogenesis of Plasmodium falciparum in vitro: an electron microscopic study. Parasitology 84, 111.Google Scholar
Sinden, R. E., Canning, E. U., Bray, R. S. and Smalley, M. E. (1978). Gametocyte and gamete development in Plasmodium falciparum. Proceedings of the Royal Society of London, B 375399.Google Scholar
Sinden, R. E., Canning, E. U. and Spain, B. (1976). Gametogenesis and fertilization in Plasmodium yoelii nigeriensis: a transmission electron microscope study. Proceedings of the Royal Society of London, B 193, 5576.Google Scholar
Smalley, M. E., Abdalla, S. and Brown, J. (1980). The distribution of Plasmodium falciparum in the peripheral blood and bone marrow of Gambian children. Transactions of the Royal Society of Tropical Medicine and Hygiene 75, 103105.Google Scholar
Smalley, M. E. and Sinden, R. E. (1977). Plasmodium falciparum gametocytes: their longevity and infectivity. Parasitology 74, 18.Google Scholar
Smith, T. G., Lourenco, P., Carter, R., Walliker, D. and Ranford-Cartwright, L. C. (2000). Commitment to sexual differentiation in the human malaria parasite, Plasmodium falciparum. Parasitology 121, 127133.Google Scholar
Stowers, A. and Carter, R. (2001). Current developments in malaria transmission-blocking vaccines. Expert Opinion on Biological Therapy 1, 619628.Google ScholarPubMed
Talman, A. M., Domarle, O., McKenzie, F. E., Ariey, F. and Robert, V. (2004). Gametocytogenesis: the puberty of Plasmodium falciparum. Malaria Journal 3, 24.Google Scholar
Templeton, T. J., Iyer, L. M., Anantharaman, V., Enomoto, S., Abrahante, J. E., Subramanian, G. M., Hoffman, S. L., Abrahamsen, M. S. and Aravind, L. (2004). Comparative analysis of apicomplexa and genomic diversity in eukaryotes. Genome Research 14, 16861695.Google Scholar
Templeton, T. J. and Kaslow, D. C. (1999). Identification of additional members define a Plasmodium falciparum gene superfamily which includes Pfs48/45 and Pfs230. Molecular and Biochemical Parasitology 101, 223227.CrossRefGoogle ScholarPubMed
Templeton, T. J., Kaslow, D. C. and Fidock, D. A. (2000). Developmental arrest of the human malaria parasite Plasmodium falciparum within the mosquito midgut via CTRP gene disruption. Molecular Microbiology 36, 19.Google Scholar
Templeton, T. J., Keister, D. B., Muratova, O., Procter, J. L. and Kaslow, D. C. (1998). Adherence of erythrocytes during exflagellation of Plasmodium falciparum microgametes is dependent on erythrocyte surface sialic acid and glycophorins. Journal of Experimental Medicine 187, 15991609.Google Scholar
Tewari, R., Dorin, D., Moon, R., Doerig, C. and Billker, O. (2005). An atypical mitogen-activated protein kinase controls cytokinesis and flagellar motility during male gamete formation in a malaria parasite. Molecular Microbiology 58, 12531263.Google Scholar
Thomson, J. G. and Robertson, A. (1935). The structure and development of Plasmodium falciparum gametocytes in the internal organs and in the peripheral circulation. Transactions of the Royal Society of Tropical Medicine and Hygiene 29, 3140.Google Scholar
Tomas, A. M., Margos, G., Dimopoulos, G., van Lin, L. H., de Koning-Ward, T. F., Sinha, R., Lupetti, P., Beetsma, A. L., Rodriguez, M. C., Karras, M., Hager, A., Mendoza, J., Butcher, G. A., Kafatos, F., Janse, C. J., Waters, A P. and Sinden, R. E. (2001). P25 and P28 proteins of the malaria ookinete surface have multiple and partially redundant functions. EMBO Journal 20, 39753983.Google Scholar
Torres, J. A., Rodriguez, M. H., Rodriguez, M. C. and de la Cruz Hernandez-Hernandez, F. (2005). Plasmodium berghei: Effect of protease inhibitors during gametogenesis and early zygote development. Experimental Parasitology 111, 255259.Google Scholar
Tosini, F., Agnoli, A., Mele, R., Moralez, M. A.& G. and Pozio, E. (2004). A new modular protein of Cryptosporidium parvum, with ricin B and LCCL domains, expressed in the sporozoite invasive stage. Molecular and Biochemical Parasitology 134, 137147.Google Scholar
Trottein, F., Triglia, T. and Cowman, A. F. (1995). Molecular cloning of a gene from Plasmodium falciparum that codes for a protein sharing motifs found in adhesive molecules from mammals and Plasmodia. Molecular and Biochemical Parasitology 74, 129141.Google Scholar
Trueman, H. E., Raine, J. D., Florens, L., Dessens, J. T., Mendoza, J., Johnson, J., Waller, C. C., Delrieu, I., Holders, A. A., Langhorne, J., Carucci, D. J., Yates, J. R. 3rd and Sinden, R. E. (2004). Functional characterization of an LCCL-lectin domain containing protein family in Plasmodium berghei. Journal of Parasitology 90, 10621071.Google Scholar
Tsai, Y. L., Hayward, R. E., Langer, R. C., Fidock, D. A. and Vinetz, J. M. (2001). Disruption of Plasmodium falciparum chitinase markedly impairs parasite invasion of mosquito midgut. Infection and Immunity 69, 40484054.Google Scholar
Vaidya, A. B., Morrisey, J., Plowe, C. V., Kaslow, D. C. and Wellems, T. E. (1993). Unidirectional dominance of cytoplasmic inheritance in two genetic crosses of Plasmodium falciparum. Molecular and Cellular Biology 13, 73497357.Google Scholar
Vaughan, J. A., Noden, B. H. and Beier, J. C. (1994). Sporogonic development of cultured Plasmodium falciparum in six species of laboratory-reared Anopheles mosquitoes. American Journal of Tropical Medicine and Hygiene 51, 233243.Google Scholar
Vermeulen, A. N., Ponnudurai, T., Beckers, P. J.& A., Verhave, J. P., Smits, M. A. and Meuwissen, J. H. (1985). Sequential expression of antigens on sexual stages of Plasmodium falciparum accessible to transmission blocking antibodies in the mosquito. Journal of Experimental Medicine 162, 14601476.Google Scholar
Vermeulen, A. N., Van Deursen, J., Brakenhoff, R. H., Lensen, T. H.& W., Ponnudurai, T. and Meuwissen, J. H. (1986). Characterisation of Plasmodium falciparum sexual stage antigens and their biosynthesis in synchronised gametocyte cultures. Molecular and Biochemical Parasitology 20, 155163.Google Scholar
Vinetz, J. M., Dave, S. K., Specht, C. A., Brameld, K. A., Xu, B., Hayward, R. and Fidock, D. A. (1999). The chitinase PfCHT1 from the human malaria parasite Plasmodium falciparum lacks proenzyme and chitin-binding domains and displays unique substrate preferences. Proceedings of the National Academy of Sciences, USA 96, 1406114066.Google Scholar
Vinetz, J. M., Valenzuela, J. G., Specht, C. A., Aravind, L., Langer, R. C., Ribeiro, J. M. and Kaslow, D. C. (2000). Chitinases of the avian malaria parasite Plasmodium gallinaceum, a class of enzymes necessary for parasite invasion of the mosquito midgut. Journal of Biological Chemistry 275, 1033110341.Google Scholar
Wagner, C., Scholz, S. M., Abreu, A., Frank, R., Templeton, T. J. and Pradel, G. (2006). Molecular interactions between PfCCp multidomain adhesion proteins during gametogenesis in Plasmodium falciparum. Proceedings of the ICOPA XI meeting, Medimond 631635.Google Scholar
Ward, P., Equinet, L., Packer, J. and Doerig, C. (2004). Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote. BMC Genomics 5, 79.Google Scholar
Williamson, K. C. (2003). Pfs230: from malaria transmission-blocking vaccine candidate toward function. Parasite Immunology 25, 351359.Google Scholar
Williamson, K. C., Criscio, M. D. and Kaslow, D. C. (1993). Cloning and expression of the gene for Plasmodium falciparum transmission-blocking target antigen Pfs230. Molecular and Biochemical Parasitology 58, 355358.Google Scholar
Williamson, K. C., Fujioka, H., Aikawa, M. and Kaslow, D. C. (1996). Stage-specific processing of Pfs230, a Plasmodium falciparum transmission-blocking vaccine candidate. Molecular and Biochemical Parasitology 78, 161169.Google Scholar
Williamson, K. C., Keister, D. B., Muratova, O. and Kaslow, D. C. (1995). Recombinant Pfs230, a Plasmodium falciparum gametocyte protein, induces antisera that reduce the infectivity of Plasmodium falciparum to mosquitoes. Molecular and Bochemical Parasitology 75, 3342.CrossRefGoogle ScholarPubMed
Wu, Y., Wang, X., Liu, X. and Wang, Y. (2003). Data-mining approaches reveal hidden families of proteases in the genome of malaria parasite. Genome Research 13, 601616.Google Scholar
Yuda, M., Sawai, T. and Chinzei, Y. (1999). Structure and expression of an adhesive protein-like molecule of mosquito invasive-stage malarial parasite. Journal of Experimental Medicine 189, 19471952.Google Scholar
Yuda, M., Yano, K., Tsuboi, T., Torii, M. and Chinzei, Y. (2001). Von Willebrand Factor A domain-related protein, a novel microneme protein of the malaria ookinete highly conserved throughout Plasmodium parasites. Molecular and Biochemical Parasitology 116, 6572.Google Scholar